K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

Để giải bài toán này, chúng ta sẽ sử dụng Định lý Fermat nhỏ và một số kiến thức về phép chia. Trước hết, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 2. Ta có thể viết lại biểu thức này thành: [n^6 - n^4 - n^2 + 1 = (n^6 - n^4) - (n^2 - 1) = n^4(n^2 - 1) - (n^2 - 1) = (n^4 - 1)(n^2 - 1).] Ta biết rằng nếu (n) là số lẻ, thì (n^2 - 1) là một số chẵn. Vì vậy, ((n^4 - 1)(n^2 - 1)) chia hết cho 2. Tiếp theo, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 32. Ta có thể viết lại biểu thức này thành: [n^6 - n^4 - n^2 + 1 = (n^6 - n^4) - (n^2 - 1) = n^4(n^2 - 1) - (n^2 - 1) = (n^4 - 1)(n^2 - 1).] Ta biết rằng nếu (n) là số lẻ, thì (n^2 - 1) là một số chẵn. Vì vậy, ((n^4 - 1)(n^2 - 1)) chia hết cho 32. Cuối cùng, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 64. Ta sẽ sử dụng Định lý Fermat nhỏ: nếu (p) là một số nguyên tố và (a) là số nguyên không chia hết cho (p), thì (a^{p-1} \equiv 1 \pmod{p}). Ở đây, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1 \equiv 0 \pmod{64}) khi (n) là số lẻ. Chúng ta sẽ xét hai trường hợp: Trường hợp 1: (n \equiv 1 \pmod{4}). Khi đó, (n^2 \equiv 1 \pmod{4}) và (n^4 \equiv 1 \pmod{4}). Do đó, (n^6 - n^4 - n^2 + 1 \equiv 1 - 1 - 1 + 1 \equiv 0 \pmod{64}). Trường hợp 2: (n \equiv 3 \pmod{4}). Khi đó, (n^2 \equiv 1 \pmod{4}) và (n^4 \equiv 1 \pmod{4}). Do đó, (n^6 - n^4 - n^2 + 1 \equiv 1 - 1 - 1 + 1 \equiv 0 \pmod{64}). Vậy, ta có thể kết luận rằng (n^6 - n^4 - n^2 + 1) chia hết cho 128 khi (n) là số lẻ.

2 tháng 3 2019

\(n^6-n^4-n^2+1\)

\(=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^4-1\right)\left(n^2-1\right)\)

\(=\left(n^2-1\right)^2\left(n^2+1\right)\)

Thay n=2k+1 vào giải :))

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

29 tháng 11 2021

a, n+5 chia hết cho n+2
    n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
       n+5-n-2 chia hết cho 2
       3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
    n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...

29 tháng 11 2021

cảm ơn bạn

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((