Cho tam giác ABC,một đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với BC ở D.Đường tròn tâm I bàn tiếp trong góc A của tam giác ABC.Vẽ đường kính DE.Gọi M,N là tiếp điểm của đường tròn tâm O,I với AB.Chứng minh:
a)OA/IA=OM/IN
b)A,E,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần chứng minh \(BD=CE.\) (Thực vậy, khi đó nếu I là trung điểm BC thì BI=EI).
Để cho tiện ta kí hiệu \(a=BC,b=CA,c=AB.\)
Gọi \(D,P,Q\) là tiếp điểm của đường tròn nội tiếp với ba cạnh \(BC,CA,AB.\)
Gọi \(E,R,S\) là tiếp điểm của đường tròn bàng tiếp góc A với ba cạnh \(BC,CA,AB.\)
Ta có \(BD=BQ,CR=CD,AQ=AR\Rightarrow BD+CR+AQ=\frac{a+b+c}{2}\)
Mặt khác \(AR+CR=b\Rightarrow BD=\frac{a+c-b}{2}\). (1)
Theo tính chất tiếp tuyến
\(2AR=AR+AS=AB+AC+BS+CR=AB+AC+BC\Rightarrow AR=\frac{a+b+c}{2}.\)
Do đó \(CE=CR=AR-AC=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}.\) (2)
Từ (1),(2) suy ra \(BD=CE\).