B=1+3+3 mũ 2 + ......... +3 mũ 10
C=1+5 mũ 3 +5 mũ 6 +5 mũ 9 .........+5 mũ 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(a=2+2^3+2^5+...+2^{99}+2^{101}\)
\(\Rightarrow4a=2^3+2^5+2^7+...+2^{101}+2^{103}\)
\(\Rightarrow4a-a=\left(2^3+2^5+2^7+...+2^{103}\right)-\left(2+2^3+2^5+...+2^{101}\right)\)
\(\Leftrightarrow3a=2^{103}-2\)
\(\Rightarrow a=\frac{2^{103}-2}{3}\)
Vậy \(a=\frac{2^{103}-2}{3}\)
b) \(b=1-5^3+5^6-5^9+...+5^{96}-5^{99}\)
\(\Rightarrow125b=5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\)
\(\Rightarrow125b+b=\left(5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\right)+\left(1-5^3+5^6-5^9+...+5^{96}-5^{99}\right)\)
\(\Leftrightarrow126b=1-5^{102}\)
\(\Rightarrow b=\frac{1-5^{102}}{126}\)
Vậy \(b=\frac{1-5^{102}}{126}\)
Học tốt!!!!
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
C=1+\(5^{3^{ }}+5^6+...+5^{99}\)
\(5^3\)C=\(5^3+5^6+...+5^{99}+5^{102}\)
(\(5^3-1\))C=\(5^{102}-1\)
C=\(\frac{5^{102}-1}{124}\)
a: =5-78*32
=5-2496
=-2491
b: \(=6\left(9-6\right)=6\cdot3=18\)
c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)
d: \(=181+3-84+8\cdot25\)
=100+200
=300
e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)
=14000-1
=13999
f: \(=3^3+25\cdot8-1=26+200=226\)
g: \(=3+2^4+1=16+4=20\)
h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)
\(A=4+4^2+...+4^{99}\)
\(\Rightarrow4A=4^2+3^3+...+4^{99}+4^{100}\)
\(\Rightarrow4A-A=4^{100}-4\)
\(\Rightarrow3A=4^{100}-4\Rightarrow A=\frac{4^{100}-4}{3}\)
\(B=5+5^2+...+5^{10}\)
\(5B=5^2+5^3+...+5^{10}+5^{11}\)
\(5B-B=4B=5^{11}-5\Rightarrow B=\frac{5^{11}-5}{4}\)
C đang 6 mũ sao tự nhiên nhảy đâu ra 9 mũ?
Nếu nó là 6 mũ thì làm tương tự như 2 câu trên
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
B=1+3+32+...+310
3B=3(1+3+32+...+310)
3B=3+32+33+...+311
3B-B=(3+32+33+...+311)-(1+3+32+...+310)
2B=311-1
B=\(\frac{3^{11}-1}{2}\)
B=88573