K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)^4=x^8+4x^6.\frac{1}{x^2}+6x^4.\frac{1}{x^4}+4x^2.\frac{1}{x^6}+\frac{1}{x^8}=7^4\)

\(\Leftrightarrow x^8+4x^4+6+\frac{4}{x^4}+\frac{1}{x^8}=2401\)(1)

Ta thấy x=0 không phải là nghiệm của phương trình nên ta có 

\(\left(1\right)\Leftrightarrow\left(x^8+\frac{1}{x^8}\right)+\left(4x^4+\frac{4}{x^4}\right)+6=2401\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2-2.x^4.\frac{1}{x^4}+4\left(x^4+\frac{1}{x^4}\right)+6=2401\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2+4\left(x^4+\frac{1}{x^4}\right)=2397\)(2)

Đặt \(x^4+\frac{1}{x^4}=t\)ta có:

\(\left(2\right)\Leftrightarrow t^2+4t=2397\)

\(\Leftrightarrow t^2+4t-2397=0\)

\(\Leftrightarrow\left(t^2-47t\right)+\left(51t-2397\right)=0\)

\(\Leftrightarrow t\left(t-47\right)+51\left(t-47\right)=0\)

\(\Leftrightarrow\left(t-47\right)\left(t+51\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-47=0\\t+51=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=47\\t=-51\end{cases}}}\)

Vì \(t=x^4+\frac{1}{x^4}\ge0\)nên \(t\ne-51\Rightarrow t=47\)

Ta lại có:

\(x^4+\frac{1}{x^4}=47\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2-2.x^4.\frac{1}{x^4}=47^2\)

\(\Leftrightarrow x^4+\frac{1}{x^8}=2209\)

6 tháng 7 2017

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)^2=x^4+\frac{1}{x^4}+2.x^4.\frac{1}{x^4}=7^2.\)

\(\Leftrightarrow x^4+\frac{1}{x^4}+2=49.\)

\(\Leftrightarrow x^4+\frac{1}{x^4}=47\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2=47^2\)

\(\Leftrightarrow x^8+\frac{1}{x^8}+2.x^4.\frac{1}{x^4}=2209\)

\(\Leftrightarrow x^8+\frac{1}{x^8}+2=2209.\)

\(\Leftrightarrow x^8+\frac{1}{x^8}=2207\)

a: Khi x=25 thì \(A=\dfrac{7}{5+8}=\dfrac{7}{13}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{x-9}\)

\(=\dfrac{x+5\sqrt{x}-24}{x-9}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{x-9}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

c: P=A*B

\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\cdot\dfrac{7}{\sqrt{x}+8}=\dfrac{7}{\sqrt{x}+3}\)

P là số nguyên

=>căn x+3 thuộc Ư(7)

=>căn x+3=7

=>x=16

15 tháng 2 2018

Câu 1) ngộ thế

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

15 tháng 5 2021

                      Bài làm :

1) Khi x=9 ; giá trị của A là :

\(A=\frac{\sqrt{9}}{\sqrt{9}+2}=\frac{3}{3+2}=\frac{3}{5}\)

2) Ta có :

\(B=...\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

3) Ta có :

\(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+2}\div\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)

Xét :

\(\frac{A}{B}+1=\frac{4}{\sqrt{x+2}}>0\Rightarrow\frac{A}{B}>-1\)

=> Điều phải chứng minh

4 tháng 6 2021

1, thay x=9(TMĐKXĐ) vào A ta đk:

A=\(\dfrac{\sqrt{9}}{\sqrt{9}-2}=3\)

vậy khi x=9 thì A =3

2,với x>0,x≠4 ta đk:

B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

vậy B=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

3,\(\dfrac{A}{B}>-1\) (x>0,x≠4)

\(\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}>-1\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}>-1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>-1\)

\(\sqrt{x}-2>-1\) (vì \(\sqrt{x}+2>0\))

\(\sqrt{x}>1\)⇔x=1 (TM)

vậy x=1 thì \(\dfrac{A}{B}>-1\) với x>0 và x≠4

11 tháng 3 2019

a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)

\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)

\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

9 tháng 4 2022

sai

20 tháng 7 2023

Bài 6:

M= 2.2 - 2.3+3.2.3

M= 4 - 6 + 18

M= 20

Bài 7: 

P= 1.2 - 5.-1.-2 + 8.-2.2

P = 2 -10 -32

P= -44

Bài 8:

A (thiếu dữ kiện bn ơi)

B= -1.2 . 3.2 + -1.3 +3.3 +-1.3

B= -2 . 6 + -3 + 9 +-3

B= -2 . 6 - 3 + 9 - 3

B= -12 - 3 + 9 - 3

B= -9

17 tháng 12 2017

a, ĐKXĐ : x khác -4;4;-2

P =[ 8+x-4/(x-4).(x+4) ] : 1/(x+2).(x-4)

   = x+4/(x+4).(x-4)   . (x+2).(x-4)

   = x+2

b, x^2-9x+20 = 0

<=> (x^2-4x)-(5x-20)=0

<=> (x-4).(x-5)=0

<=> x-4=0 hoặc x-5=0

<=> x=4 hoặc x=5

+, Với x=4 thì P = 4+2 = 6

+, Với x=5 thì P = 5+2 = 7

k mk nha