K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

a) -1

b)-27

chúc bn học tốt

6 tháng 7 2017

Ta cos : -(x + 3)(x - 4) + (x - 1)(x + 1) = 10

<=> -(x2 - x -12) + x2 + 1 = 10

<=> -x2 + x + 12 + x2 + 1 = 10

<=> x + 13 = 10

=> x = 10 - 13

=> x = -3

10 tháng 9 2021

\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)

\(\Leftrightarrow-11x=-22\)

hay x=2

b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)

\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)

\(\Leftrightarrow x=-5\)

26 tháng 10 2021

a: \(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

c: \(\Leftrightarrow\left(x-1\right)\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

26 tháng 10 2021

a) \(x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\\ \Leftrightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

c) \(9x^2\left(x-1\right)=x-1\\ \Leftrightarrow\left(9x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(3x+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)

d) \(x^2-4=\left(x-2\right)^2\\ \Leftrightarrow\left(x-2\right)\left(x+2-x+2\right)=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x=2\)

e) \(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

f) \(x^3-0,36=0\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

g) \(\Leftrightarrow\left(5x-1\right)\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2018\end{matrix}\right.\)

h) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

 

3 tháng 10 2021

\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)

15 tháng 10 2021

a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)

\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)

b) \(\Rightarrow x^2-13x+22=0\)

\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)

c) \(\Rightarrow x^2-3x-10=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

7 tháng 11 2021

\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)

\(\Leftrightarrow10x-4=6\)

\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)

\(\Leftrightarrow x=1\)

\(x^2\left(x-2021\right)-x+2021=0\)

\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)

 

19 tháng 12 2021

g: \(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36=0\)

\(\Leftrightarrow\left(x+3\right)^2\left(x^2+6x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{matrix}\right.\)

15 tháng 10 2023

2:

a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)

b: \(2\left(x-1\right)+x^2-x\)

\(=2\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+2\right)\)

c: \(3x^2+14x-5\)

\(=3x^2+15x-x-5\)

\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)

3: 

a: \(2x\left(x-1\right)-2x^2=4\)

=>\(2x^2-2x-2x^2=4\)

=>-2x=4

=>x=-2

b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)

=>\(x^2-3x-\left(x^2+x-2\right)=5\)

=>\(x^2-3x-x^2-x+2=5\)

=>-4x=3

=>x=-3/4

c: \(4x^2-25+\left(2x+5\right)^2=0\)

=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)

=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)

=>4x(2x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)