K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

Để chứng minh rằng phương trình A(x) + B(x) = 8x^3 + x^2 + 2 vô nghiệm, ta cần chứng minh rằng không có giá trị của x thỏa mãn phương trình này. Giả sử tồn tại một giá trị x0 sao cho A(x0) + B(x0) = 8x0^3 + x0^2 + 2. Ta sẽ chứng minh rằng giả định này dẫn đến mâu thuẫn. Với phương trình cho trước, ta có thể giải ra giá trị của A(x) và B(x). Ta có: A(x) = 8x^3 + x^2 + 2 - B(x) Thay vào phương trình ban đầu, ta có: 8x^3 + x^2 + 2 - B(x) + B(x) = 8x^3 + x^2 + 2 Bỏ bớt các thành phần giống nhau, ta được: 0 = 0 Điều này cho thấy rằng giả định ban đầu là sai. Vì vậy, không có giá trị của x thỏa mãn phương trình A(x) + B(x) = 8x^3 + x^2 + 2. Từ đó, ta kết luận rằng phương trình A(x) + B(x) = 8x^3 + x^2 + 2 vô nghiệm.

23 tháng 2 2018

      \(x^2-8x+17=0\)

\(\Leftrightarrow\)\(x^2-8x+16+1=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+1=0\)

Ta thấy    \(\left(x-4\right)^2\ge0\)\(\Rightarrow\)\(\left(x-4\right)^2+1\ge1\)

Vậy pt vô nghiệm

9 tháng 4 2023

\(a,A\left(x\right)=\left(x-1\right)\left(x^2-5x+1\right)-\left(x-2\right)\left(x+2\right)-x\left(x^2-8x+6\right)\\ =x\left(x^2-5x+1\right)-\left(x^2-5x+1\right)-\left[x\left(x-2\right)+2\left(x-2\right)\right]-x^3+8x^2-6x\\ =x^3-5x^2+x-x^2+5x-1-\left[x^2-2x+2x-4\right]-x^3+8x^2-6x\\ =x^3-5x^2+x-x^2+5x-1-x^2+2x-2x+4-x^3+8x^2-6x\\ =\left(x^3-x^3\right)-\left(5x^2+x^2+x^2-8x^2\right)+\left(x+5x+2x-2x-6x\right)-\left(1-4\right)\\ =x^2+3\)

`b)`

`AA x` , ta có :

`x^2 >=0`

`=>x^2 +3>0`

hay `A(x)>0`

Vậy đa thức `A(x)` khong có nghiệm 

thiếu đề rồi bạn ơi

3 tháng 8 2018

\(2x^2+8x+17=2.\left(x^2+2.x.2+2^2\right)+9=2.\left(x+2\right)^2+9\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow2.\left(x+2\right)^2+9\ge9\forall x\)

\(\Rightarrow2x^2+8x+17>0\forall x\)

\(\Rightarrow\)đa thức \(2x^2+8x+17\)vô nghiệm

                                                    đpcm

\(-x^2+4x-6=-\left(x^2+2.x.2+2^2\right)-2=-\left(x+2\right)^2-2\)

Ta có:\(\left(x+2\right)^2\ge0\forall x\)

 \(\Rightarrow-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2-2\le-2\forall x\)

\(\Rightarrow-\left(x+2\right)^2-2< 0\forall x\)

\(\Rightarrow\)đa thức \(-x^2+4x-6\)vô nghiệm

                                             đpcm

Tham khảo nhé~

17 tháng 5 2019

a, 

A(x) + B(x) = (3x3 + x + 3x2 + 1) + (2x2 + 3x3 -x - 5) 

A(x) + B(x) = 3x3 + x + 3x2 + 1 + 2x2 + 3x3 - x - 5 

A(x) + B(x) = (3x3 + 3x3) + (3x2 + 2x2) + (x - x) + (1 - 5) 

A(x) + B(x) = 6x3 + 5x2 - 4 

b, A(x) - B(x) = (3x3 + x + 3x2 + 1) - (2x2 + 3x3 -x - 5) 

                     = 3x3 + x + 3x2 + 1 - 2x2 - 3x3 + x + 5 

                     = (3x3 - 3x3) + (3x2 - 2x2) + (x + x) + (1 + 5)

                     = x2 + 2x + 6 

Vì x2 \(\ge\)0 với mọi x 

   2x \(\ge\)0 với mọi x 

=> x2 + 2x + 6 \(\ge\)6 > 0  với mọi x 

=> A(x) - B(x) vô nghiệm 

Câu a dễ rồi mình làm câu b thôi nhé

b, \(A\left(x\right)-B\left(x\right)=x^2-2x+6\)

\(A\left(x\right)-B\left(x\right)=\left(x^2-2x.1+1^2\right)+6-1\)

\(A\left(x\right)-B\left(x\right)=\left(x+1\right)^2+5\)

\(V\text{ì}\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A\left(x\right)-B\left(x\right)\ge5\forall x\)

Vậy...

6 tháng 3 2020

a) \(ĐKXĐ:x\inℝ\)

\(\frac{x^2+2x+3}{x^2-x+1}=0\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

b) \(ĐKXĐ:x\ne\pm2\)

 \(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x+4x+8-4=0\)

\(\Leftrightarrow x^2+2x+4=0\)

\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

a: \(x^2-8x-33=0\)

a=1; b=-8; c=-33

Vì ac<0 nên phương trình có hai nghiệm phân biệt

b: \(A=3\left(x_1+x_2\right)^2-2x_1x_2=3\cdot8^2-2\cdot\left(-33\right)=192+66=258\)

 

5 tháng 3 2022

a.

-\(\Delta=\left(-8\right)^2-4.\left(-33\right)=64+132=196>0\)

Vậy pt luôn có 2 nghiệm phân biệt

-Giả sử: \(x_1;x_2\) là nghiệm của pt

Theo hệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-8\right)}{1}=\dfrac{8}{1}=8\\x_1.x_2=\dfrac{-33}{1}=-33\end{matrix}\right.\)

 

21 tháng 7 2017

bn hk hằng đẳng thức chưa ?

12 tháng 2 2020

a) Ta có: \(x^2+2x+3\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2>0\)

Vậy pt vô nghiệm

12 tháng 2 2020

b) Ta có \(x^2+2x+4\)

\(=\left(x^2+2x+1\right)+3\)

\(=\left(x+1\right)^2+3>0\)

Vậy pt vô nghiệm