K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)

Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)

Lấy (4) trừ (3) ta có:

\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)

7 tháng 3 2023

`45-21/18xx2/15`

`=45-7/6xx2/15`

`=45-7/45`

`=2025/45-7/45`

`=2018/45`

3 tháng 5 2022

\(\dfrac{9}{5}+\dfrac{5}{7}+\dfrac{7}{5}+\dfrac{3}{7}=\left(\dfrac{9}{5}+\dfrac{7}{5}\right)+\left(\dfrac{5}{7}+\dfrac{3}{7}\right)=\dfrac{16}{5}+\dfrac{8}{7}=\dfrac{112}{35}+\dfrac{40}{35}=\dfrac{152}{35}\)

 

\(\dfrac{1}{2}\times\dfrac{45}{33}\times\dfrac{1}{9}\times\dfrac{11}{6}=\dfrac{1}{2}\times\dfrac{15}{11}\times\dfrac{1}{9}\times\dfrac{11}{6}=\left(\dfrac{1}{2}\times\dfrac{1}{9}\right)\times\left(\dfrac{15}{11}\times\dfrac{11}{6}\right)=\dfrac{1}{18}\times\dfrac{15}{6}=\dfrac{5}{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2023

Lời giải:
$=\frac{-9}{10}+\frac{13}{10}+(\frac{6}{11}-\frac{9}{11})$

$=\frac{13-9}{10}+\frac{6-9}{11}=\frac{4}{10}-\frac{3}{11}$

$=\frac{7}{55}$

12 tháng 1 2022

\(a,P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

\(b,P=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\Leftrightarrow\sqrt{x}=\dfrac{7}{11}\Leftrightarrow x=\dfrac{49}{121}\left(tm\right)\)

\(c,P-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)

Ta có \(3\left(\sqrt{x}+3\right)>0;-17\sqrt{x}\le0,\forall x\)

\(\Rightarrow P-\dfrac{2}{3}\le0\Leftrightarrow P\le\dfrac{2}{3}\left(đpcm\right)\)

6 tháng 7 2023

\(\dfrac{1}{3}+\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}\)

\(\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}-\dfrac{1}{3}\)

\(\dfrac{5}{6}\cdot\left(x-\dfrac{11}{5}\right)=\dfrac{5}{12}\)

\(x-\dfrac{11}{5}=\dfrac{5}{12}\cdot\dfrac{6}{5}\)

\(x-\dfrac{11}{5}=\dfrac{1}{2}\)

\(x=\dfrac{1}{2}+\dfrac{11}{5}\)

\(x=\dfrac{27}{10}\)

\(\dfrac{5}{6}\left(x-\dfrac{11}{5}\right)=\dfrac{3}{4}-\dfrac{1}{3}\)

\(\dfrac{5}{6}\left(x-\dfrac{11}{5}\right)=\dfrac{5}{12}\)

\(x-\dfrac{11}{5}=\dfrac{5}{12}:\dfrac{5}{6}\)

\(x-\dfrac{11}{5}=\dfrac{1}{2}\)

\(x=\dfrac{1}{2}+\dfrac{11}{5}=\dfrac{27}{10}\)

`@` `\text {Ans}`

`\downarrow`

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)

\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}\)`=`\(\dfrac{\left(5z-25\right)-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)

`=`\(\dfrac{5z-25-3x+3-4y-12}{8}\)

`=`\(\dfrac{\left(5z-3x-4y\right)+\left(-25+3-12\right)}{8}\)

`=`\(\dfrac{50-34}{8}\)`=`\(\dfrac{16}{8}=2\)

`=>`\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=2\)

`=>`\(\left\{{}\begin{matrix}x=2\cdot2+1=5\\y=2\cdot4-3=5\\z=2\cdot6+5=17\end{matrix}\right.\)

Vậy, `x,y,z` lần lượt là `5; 5; 17.`