Các bạn ơi giúp mình câu 2,3 nhé. Ko cần vẽ hình đâu. Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\left(1\right)\)
Xét ΔMNK vuông tại M có MQ là đường cao
nên \(NQ\cdot NK=MN^2\left(2\right)\)
Từ (1) và (2) suy ra \(NH\cdot NP=NQ\cdot NK\)
gọi (d) y=x 0 y x 1 2 1 -1 2 -2
Thay x=1=>y=1=> (1;1)
Thay x=2=>y=2=> (2;2)
gọi (d1) y=-2x
Thay x=-1=> y=2=> (-1;2)
Thay x=1=>y=-2=> (1;-2)
Gọi E là giao điểm của AC và BD.
∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.
Suy ra EC = ED (1)
Tương tự ∆EAB cân tại A suy ra: EA = EB (2)
Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD
Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.4
rời ,bảo là đăng lại ,giúp tao bỏi cái thằng mặt dày đó đi
Các bạn ơi mình nhầm nhé phải thêm thằng mặt dày bám đuôi mới đúng
2:
Xét ΔABC vuông tại A có AH là đường cao
nên BH*HC=AH^2
Xét ΔAHM vuông tại H có HN là đường cao
nên AN*AM=AH^2
=>AN*AM=BH*HC
=>2*AN*AM=2*BH*HC
=>2*BH*HC=BC*AN
3: sin2C=2*sinC*cosC
mà cosC=sinB
nên sin2C=2*sinB*sinC