tam giác ABC có các góc A=75, B=45. tính tỉ số AB/AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề không hiểu các dâu hình chữ nhật sau ACB là gì?
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
hay ΔBCA vuông tại A
\(BC^2=AB^2+AC^2=36+64=100=10^2\)
\(\Rightarrow BC=10\left(cm\right)\)
\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)
\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)
\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)
Đổi AB=60mm=6cm
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có
\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)
Áp dụng đl tổng 3 góc trong tam giác:
\(\Rightarrow\widehat{C}=180^o-75^o-45^o=60^o\)
Ta có:
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\\ \Rightarrow\dfrac{AB}{AC}=\dfrac{sinC}{sinB}=\dfrac{\sqrt{6}}{2}\)
$HaNa$
Mà: \(\widehat{C}=180^o-75^o-45^o=60^o\)
Ta có:
\(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{sinC}{sinB}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{sin60^o}{sin45^o}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{\sqrt{2}}{2}}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{\sqrt{2}}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{2}\)