K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

2x + 1 = 101

2x = 101 - 1 

2x = 100

x = 50 

5 tháng 7 2017

deu vai

5 tháng 7 2017

\(1+3+5+...+\left(2x+1\right)=2601\)

số số hạng: \(\left[\left(2x+1\right)-1\right]:2+1=x+1\)

tổng: \(\left(2x+1\right)+1:2x\left(x+1\right)=\left(x+1\right)^2\)

\(\left(x+1\right)^2=2601\)

\(\Rightarrow\orbr{\begin{cases}x+1=51\\x+1=-51\end{cases}\Rightarrow\orbr{\begin{cases}x=50\\x=-52\end{cases}}}\)

5 tháng 7 2017

2x + 1 = 101

=> x= 50

k co minh nhe

5 tháng 7 2017

Số số hạng : (2x+1) - 1 : 2 + 1 = x +1 

Tổng : (2x+1) + 1 : 2 x (x+1)  = (x+1)(x+1)

(x+1)(x+1) = 2601 

(x+1)(x+1) = 51x51

x + 1 = 51

x = 50 

11 tháng 6 2018

2x + 1 = 101

2x       = 101 - 1

2x       = 100

  x       = 100 : 2

  x       = 50

23 tháng 6 2019

Từ 1 đến x có số số hạng là : 

(x - 1) : 2 + 1 =\(\frac{x-1}{2}+1=\frac{x}{2}-\frac{1}{2}+1=\frac{x}{2}+\frac{1}{2}=\frac{x+1}{2}\)

Trung bình cộng của tổng là : 

(x + 1) : 2= \(\frac{x+1}{2}\)

=> Tổng là : 1 + 3 + 5 + ... + x =  \(\frac{x+1}{2}.\frac{x+1}{2}\)= 2601

=> \(\left(\frac{x+1}{2}\right)^2=2601\)

=> \(\left(\frac{x+1}{2}\right)^2=51^2\)

Vì \(x\inℕ\Rightarrow\frac{x+1}{2}\inℕ\)

=> \(\frac{x+1}{2}=51\)

=> x + 1 : 2 = 51

=> x + 1      = 51 . 2

=> x + 1      = 102

=> x            = 102 - 1

=> x            = 101

x+ ( x+2) + (x+4) + ( x+6) +....... + (x+98)+ (x+100) =2601

x + x + 2 + x + 4 + x + 6 + ... + x + 98 + x + 100 = 2601

x + x + x + .... + x   ( 51 chữ x ) + ( 2 + 4 + 6 + ... + 98 + 100 ) = 2601 

51x +  2550 = 2601

51x = 51

x = 1

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)

`=> (x-3)5 = (2x+1)3`

`=> 5x-15 = 6x+3`

`=> 5x-6x = 15+3`

`=> -x=18`

`=> x=-18`

\(\dfrac{x+1}{22}=\dfrac{6}{x}\)

`=> (x+1)x = 22*6`

`=> (x+1)x = 132`

`=> x^2 + x = 132`

`=> x^2+x-132=0`

`=> (x-11)(x+12)=0`

`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)

\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)

`=> (2x-1)x = 2*5`

`=> 2x^2 - x =10`

`=> 2x^2 - x - 10 =0`

`=> 2x^2 + 4x - 5x - 10 =0`

`=> (2x^2 + 4x) - (5x+10)=0`

`=> 2x(x+2) - 5(x+2)=0`

`=> (2x-5)(x+2)=0`

`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)

`=> (2x-1)(2x+1)=21*3`

`=> 4x^2 + 2x - 2x - 1 = 63`

`=> 4x^2 - 1=63`

`=> 4x^2 - 1 - 63=0`

`=> 4x^2 - 64 = 0`

`=> 4(x^2 - 16)=0`

`=> 4(x^2 + 4x - 4x - 16)=0`

`=> 4[(x^2+4x)-(4x+16)]=0`

`=> 4[x(x+4)-4(x+4)]=0`

`=> 4(x-4)(x+4)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)

`=> (2x+1)(x+1) = 9*5`

`=> (2x+1)(x+1)=45`

`=> 2x^2 + 2x + x + 1 = 45`

`=> 2x^2 + 3x + 1 =45`

`=> 2x^2 + 3x + 1 - 45 =0`

`=> 2x^2+3x-44=0`

`=> 2x^2 + 11x - 8x - 44=0`

`=> (2x^2 +11x) - (8x+44)=0`

`=> x(2x+11) - 4(2x+11)=0`

`=> (x-4)(2x+11)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)

15 tháng 6 2023

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)

\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)

 

 

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}