K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Lời giải:

Ta có:

\(\frac{MB}{MC}=\frac{S_{BIM}}{S_{CIM}}=\frac{S_{BAM}}{S_{CAM}}=\frac{S_{BAM}-S_{BIM}}{S_{CAM}-S_{CIM}}=\frac{S_{BAI}}{S_{CAI}}\)

\(\frac{NC}{NA}=\frac{S_{BNC}}{S_{BAN}}=\frac{S_{CNI}}{S_{ANI}}=\frac{S_{BNC}-S_{CNI}}{S_{BAN}-S_{ANI}}=\frac{S_{BIC}}{S_{BAI}}\)

\(\frac{PA}{PB}=\frac{S_{PAC}}{S_{PBC}}=\frac{S_{PAI}}{S_{PBI}}=\frac{S_{PAC}-S_{PAI}}{S_{PBC}-S_{PBI}}=\frac{S_{PAI}}{S_{BIC}}\)

Nhân 3 đẳng thức với nhau:

\(\frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=1\) (đpcm)

 

 

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Hình vẽ:undefined

a) Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

21 tháng 2 2021

định lý Ceva

27 tháng 6 2018

Đặt \(S_{AMB}=a;S_{BMC}=b;S_{CMA}=c\)

Ta có \(\frac{AM}{MA'}+\frac{BM}{MB'}+\frac{MC}{MC'}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=\(\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge6\)(cô-si)