tìm x bt :
a.2|3x-1| + 1 = 5
giúp mik vs;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
A. 2.\(|3x+1|\)=\(\frac{3}{4}\)-\(\frac{5}{8}\)
2.\(|3x+1|\)=1/8
\(|3x+1|\)=1/8:2
\(|3x+1|\)=1/16
TH1 : 3x+1=1/16
3x=1/16-1
3x=-15/16
x=-15/16:3
x=-5/16
a,\(\frac{3}{4}-2.\left|3x+1\right|=\frac{5}{8}\)
\(\Rightarrow2.\left|3x+1\right|=\frac{3}{4}-\frac{5}{8}=\frac{6}{8}-\frac{5}{8}=\frac{1}{8}\)
\(\Rightarrow\left|3x+1\right|=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{16}\\3x+1=\frac{-1}{16}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{16}-1=\frac{-15}{16}\\3x=\frac{-1}{16}-1=\frac{-17}{16}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{16}.\frac{1}{3}=\frac{-5}{16}\\x=\frac{-17}{16}.\frac{1}{3}=\frac{-17}{48}\end{cases}}\)
Vậy....
b,\(\left|3x+2\right|-\left|x-3\right|=\frac{7}{2}\left(1\right)\)
Ta có bảng xét dấu
x | \(\frac{-2}{3}\) 3 |
3x+2 | - 0 + | + |
x-3 | - | - 0 + |
Nếu x<\(\frac{-2}{3}\) thì \(\left|3x+2\right|-\left|x-3\right|\) \(=-3x-2-3+x\)
\(=-2x-5\)
Từ (1) \(\Rightarrow-2x-5=\frac{7}{2}\)
\(\Rightarrow-2x=\frac{7}{2}+5=\frac{17}{2}\)
\(\Rightarrow x=\frac{17}{2}\cdot\frac{-1}{2}=\frac{-17}{4}\)(thỏa mãn x<\(\frac{-2}{3}\)
Nếu \(\frac{-2}{3}\le x\le3\)thì \(\left|3x+2\right|-\left|x-3\right|=3x+2-\left(3-x\right)\)
\(=3x+2-3+x\)
\(=2x-1\)
Từ (1)\(\Rightarrow\)\(2x-1=\frac{7}{2}\)
\(\Rightarrow2x=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{4}\)(thỏa mãn......
Còn trưonwfg hợp cuối bạn tự làm nốt nhé
4) (3x-2)(x-3)= 3x(x-3)-2(x-3)
=3x.x+3x.(-3)-2.x-2.(-3)
=\(3x^2\)-9x-4x+6
=\(3x^2\)+(-9x-4x)+6
=\(3x^2\)-13x+6
5) (2x+1)(x+3)=2x(x+3)+1(x+3)
=2x.x+2x.3+1.x+1.3
=\(2x^2\)+6x+1x+3
=\(2x^2\)+(6x+1x)+3
=\(2x^2\)+7x+3
6) (x-3)(3x-1)=x(3x-1)-3(3x-1)
=x.3x+x.(-1)-3.3x-3.(-1)
=\(3x^2\)-1x-9x+3
=\(3x^2\)+(-1x-9x)+3
=\(3x^2\)-10x+3
rút gọn biểu thức
A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)
=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)
=\(x^2\)-\(x^2\)+1x-4x+4
=(\(x^2-x^2\))+(1x-4x)+4
= -3x+4
B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)
=\(x^2+2x\)-x.x-x.4+2.x+2.4
=\(x^2+2x-x^2-4x+2x+8\)
=(\(x^2-x^2\))+(2x-4x+2x)+8
=8
tính giá trị biểu thức
A=3(x-2)-(2+x)(x-3)
=3.x+3.(-2)-2(x-3)-x(x-3)
=3x-6-2.x-2.(-3)-x.x-x(-3)
=3x-6-2x+6-\(x^2\)+3x
=(3x-2x+3x)+(-6+6)\(-x^2\)
=4x - \(x^2\)
thay x=-8 vào biểu thức thu gọn ta được:
4.(-8)- (-8)\(^2\)
= - 32 +64
= 32
B= x(3-x)-(1+x)(1-x)
=x.3+x.(-x)-1(1-x)-x(1-x)
=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)
=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)
=(3x+1x-1x)+(\(-x^2+x^2\))-1
=3x-1
thay x=-5 vào biểu thức thu gọn ta được:
3.(-5)-1
=-15-1
=-16
Thu gọn biểu thức
4) (3x - 2) (x - 3)
= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )
= 3x2 - 2x - 3x x 3 + 2 x 3
= 3x2 - 2x - 9x + 6
= 3x2 - 11x + 6
5) (2x + 1) (x + 3)
= ( 2x2 + 1x ) + ( 6x + 3 )
= 2x2 + 1x + 6x + 3
= 2x2 + 7x + 3
6) (x - 3) (3x - 1)
= ( 3x2 - 9x ) - ( x - 3 )
= 3x2 - 9x - x + 3
= 3x2 - 10 + 3
Rút gọn biểu thức
A) x^2 - (x + 4) (x - 1)
= x2 - ( x2 + 4x ) - ( x + 4 )
= x2 - x2 - 4x - x - 4
= -5x - 4
B) x (x + 2) - (x - 2) (x + 4)
= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )
= x2 + 2x - x2 + 2x + 4x - 8
= 8x - 8
Tính giá trị biểu thức
A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8
Thế x = -8 vào, ta có :
= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )
= 3 x ( -10 ) - ( - 6 ) ( -11 )
= -30 - 66
= -96
B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5
Thế x = - 5 vào, ta có :
= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )
= -5 x 8 - (-4) x 6
= - 40 - -24
= -40 + 24
= -16
100% đúng
hok tốt nha
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
\(a,2\left|3x-1\right|+1=5\)
\(\Leftrightarrow2\left|3x-1\right|=4\)
\(\Leftrightarrow\left|3x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
2.l3x-1l+1=5
=>2.l3x-1l=4
=>l3x-1l=2
TH1:3x-1=2 =>x=1
TH2:3x-1=-2 =>x=-1/3