K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:
Ta thấy:

$\widehat{yBA}+\widehat{BAx}=124^0+56^0=180^0$. Mà 2 góc này ở vị trí trong cùng phía nên $By\parallel Ax$ (đpcm)

6 tháng 7 2017

hình vẽ đâu bạn

7 tháng 11 2017

sao ko có hình vẽ

10 tháng 6 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Do ABCD là hình bình hành, nên AB // DC

=> AB // (Cz, Dt) (1)

Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)

Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)

b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)

Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)

Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.

=> J là trung điểm của A’C’ ( tính chất hình bình hành).

Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang

=> IJ// AA’// CC’ ( đpcm).

c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)

IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)

Từ đây suy ra: DD’ + BB’ = AA’ + CC’

=> DD’ = AA’ + CC’ – BB’ = a + c – b

20 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ Ax // (Cz,Dt)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)

Tương tự ta có (Ax, Dt) // (By,Cz)

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.

c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 12 2017

Bài 1:

a) Đồ thị của hàm số y = \(\dfrac{2}{3}\)x là đường thẳng OA với A(3 ; 2)

Violympic toán 7b) \(2x+\dfrac{3}{4}=\dfrac{-1}{2}\)

\(2x=\dfrac{-1}{2}-\dfrac{3}{4}\)

\(2x=-\dfrac{5}{4}\)

\(x=-\dfrac{5}{4} :2\)

\(x=-\dfrac{5}{8}\)

c) Ta có: x.2 = y.4 \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{x-y}{4-2}=\dfrac{12}{2}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.4=24\\y=6.2=12\end{matrix}\right.\)

Vậy x = 24; y = 12.

23 tháng 12 2017

Bài 2:

A P x y Q B M

a) NB?

Vì M là trung điểm của AB

nên MA = MB = \(\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}Ax\perp AB\\By\perp AB\end{matrix}\right.\)

\(\Rightarrow Ax//By\)

b) Xét hai tam giác vuông AMP và BMQ có:

MA = MB (gt)

\(\widehat{AMP}=\widehat{BMQ}\) (đối đỉnh)

\(\Rightarrow\Delta AMP=\Delta BMQ\left(cgv-gn\right)\)

\(\Rightarrow\) MP = MQ

Xét hai tam giác AMQ và BMP có:

MA = MB (gt)

\(\widehat{AMQ}=\widehat{BMP}\) (đối đỉnh)

MQ = MP (cmt)

\(\Rightarrow\Delta AMQ=\Delta BMP\left(c-g-c\right)\)

\(\Rightarrow\widehat{AQM}=\widehat{BPM}\)

Mà hai góc này ở vị trí so le trong

\(\Rightarrow\) AQ // BP (đpcm).

23 tháng 12 2017

1)

a)

_ Xác định điểm A(3;2)

_ Đường thẳng OA là đồ thị của hàm số \(y=\dfrac{2}{3}x\)

y x O y=2/3x A

24 tháng 12 2017

a)Hàm số y=\(\dfrac{2}{3}\)x

Đi qua x=0 \(\rightarrow\)y=0 0(0:0)

x=3\(\rightarrow\)y=2 A(3:2)

Violympic toán 7

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

16 tháng 8 2021

kẻ tia Ot // Ax mà Ax//By

nên Qt//Ax//By

Ay//Ot

=>g xAO + g AOt=1800 ( hai góc trong cùng phía)

1050+ g AOt=1800

=>g AOt=1800-1050

=750

ta lại có gAOB=gAOt+gBOt

800=750+gBOt

=>gBOt=800-750=50

ta có Ot//By

=>gBOt+gOBy=1800(trong cùng phía)

50+gOBy=1800

=>gOBy=1800-50=1750