Cho hình vẽ, chứng minh: Ax song song By ( Ax//By )
c B A y x 124* 56*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do ABCD là hình bình hành, nên AB // DC
=> AB // (Cz, Dt) (1)
Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)
Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)
b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)
Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)
Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.
=> J là trung điểm của A’C’ ( tính chất hình bình hành).
Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang
=> IJ// AA’// CC’ ( đpcm).
c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)
IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)
Từ đây suy ra: DD’ + BB’ = AA’ + CC’
=> DD’ = AA’ + CC’ – BB’ = a + c – b
a) Ta có:
⇒ Ax // (Cz,Dt)
Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)
Tương tự ta có (Ax, Dt) // (By,Cz)
b)
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra
Tương tự ta có:
Bài 1:
a) Đồ thị của hàm số y = \(\dfrac{2}{3}\)x là đường thẳng OA với A(3 ; 2)
b) \(2x+\dfrac{3}{4}=\dfrac{-1}{2}\)
\(2x=\dfrac{-1}{2}-\dfrac{3}{4}\)
\(2x=-\dfrac{5}{4}\)
\(x=-\dfrac{5}{4} :2\)
\(x=-\dfrac{5}{8}\)
c) Ta có: x.2 = y.4 \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{x-y}{4-2}=\dfrac{12}{2}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.4=24\\y=6.2=12\end{matrix}\right.\)
Vậy x = 24; y = 12.
Bài 2:
A P x y Q B M
a) NB?
Vì M là trung điểm của AB
nên MA = MB = \(\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}Ax\perp AB\\By\perp AB\end{matrix}\right.\)
\(\Rightarrow Ax//By\)
b) Xét hai tam giác vuông AMP và BMQ có:
MA = MB (gt)
\(\widehat{AMP}=\widehat{BMQ}\) (đối đỉnh)
\(\Rightarrow\Delta AMP=\Delta BMQ\left(cgv-gn\right)\)
\(\Rightarrow\) MP = MQ
Xét hai tam giác AMQ và BMP có:
MA = MB (gt)
\(\widehat{AMQ}=\widehat{BMP}\) (đối đỉnh)
MQ = MP (cmt)
\(\Rightarrow\Delta AMQ=\Delta BMP\left(c-g-c\right)\)
\(\Rightarrow\widehat{AQM}=\widehat{BPM}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AQ // BP (đpcm).
1)
a)
_ Xác định điểm A(3;2)
_ Đường thẳng OA là đồ thị của hàm số \(y=\dfrac{2}{3}x\)
y x O y=2/3x A
a)Hàm số y=\(\dfrac{2}{3}\)x
Đi qua x=0 \(\rightarrow\)y=0 0(0:0)
x=3\(\rightarrow\)y=2 A(3:2)
kẻ tia Ot // Ax mà Ax//By
nên Qt//Ax//By
Ay//Ot
=>g xAO + g AOt=1800 ( hai góc trong cùng phía)
1050+ g AOt=1800
=>g AOt=1800-1050
=750
ta lại có gAOB=gAOt+gBOt
800=750+gBOt
=>gBOt=800-750=50
ta có Ot//By
=>gBOt+gOBy=1800(trong cùng phía)
50+gOBy=1800
=>gOBy=1800-50=1750
Lời giải:
Ta thấy:
$\widehat{yBA}+\widehat{BAx}=124^0+56^0=180^0$. Mà 2 góc này ở vị trí trong cùng phía nên $By\parallel Ax$ (đpcm)