K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

Diện tích mặt đáy là:\(\dfrac{a^2.\sqrt{3}}{4}\)

Thể tích khối lăng trụ là: \(a.\dfrac{a^2.\sqrt{3}}{4}=\dfrac{a^3.\sqrt{3}}{4}\)

\(\Rightarrow A\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Diện tích đáy lớn là: \(S = \frac{{{{\left( {2{\rm{a}}} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Diện tích đáy bé là: \(S' = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích của bồn chứa là: \(V = \frac{1}{3}.\frac{{a\sqrt 6 }}{3}\left( {{a^2}\sqrt 3  + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}}  + \frac{{{a^2}\sqrt 3 }}{4}} \right) = \frac{{7\sqrt 2 }}{{12}}{a^3}\)

Chọn C.

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\) Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\) A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\) Câu 3 : Tính thể tích V của khối lăng trụ...
Đọc tiếp

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức

A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\)

Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\)

A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 3 : Tính thể tích V của khối lăng trụ đứng có đáy là tam giác vuông cân có cạnh góc vuông bằng \(a\sqrt{2}\) , cạnh bên của lăng trụ bằng 5a

A. V = 5a3 B. V = \(2\sqrt{2}a^3\) C. V = \(\frac{5}{3}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 4 : Tính thể tích V của khối lăng trụ tam giác đều . Biết cạnh đáy bằng \(a\sqrt{3}\) và đường chéo của một mặt bên bằng 2a

A. V = \(\sqrt{3}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 5 : Tính thể tích V của khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều . Biết cạnh đáy bằng \(\alpha\) và góc giữa (A'BC) với mặt phẳng (ABC) bằng 600

A. V = \(\frac{3\sqrt{3}}{8}a^3\) B. V = \(\frac{3\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

3
NV
22 tháng 8 2020

5.

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\)

\(\Rightarrow BC\perp\left(A'AM\right)\)

\(\Rightarrow\widehat{A'MA}\) là góc giữa (A'BC) và (ABC)

\(\Rightarrow\widehat{A'MA}=60^0\)

\(AM=\frac{a\sqrt{3}}{2}\Rightarrow A'A=AM.tan60^0=\frac{3a}{2}\)

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=B.A'A=\frac{3\sqrt{3}}{8}a^3\)

NV
22 tháng 8 2020

1.

\(V=Bh\)

2.

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=Bh=\frac{a^2\sqrt{3}}{4}.a\sqrt{6}=\frac{3\sqrt{2}}{4}a^3\)

3.

\(B=\frac{1}{2}\left(a\sqrt{2}\right)^2=a^2\Rightarrow V=Bh=a^2.5a=5a^3\)

4.

\(h=\sqrt{\left(2a\right)^2-\left(a\sqrt{3}\right)^2}=a\)

\(B=\frac{\left(a\sqrt{3}\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{4}a^2\)

\(V=Bh=\frac{3\sqrt{3}}{4}a^3\)

Chọn C

24 tháng 1 2022

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)

Chọn A

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC) A. 150 B. 300 C. 450 D. 600 Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V =...
Đọc tiếp

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC)

A. 150 B. 300 C. 450 D. 600

Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a

A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V = \(\frac{1}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\frac{1}{6}a^3\)

Câu 3 : Cho lăng trụ đứng ABC.A'B'C' có đáy ABC vuông cân tại B , AB = \(a\sqrt{2}\) . Góc giữa A'B và mặt phẳng (ACC'A' ) bằng 300 . Tính thể tích khối lăng trụ ABC.A'B'C'

A. 2a3 B. \(2\sqrt{6}a^3\) C. \(\frac{2\sqrt{6}}{3}a^3\) D. \(\frac{2}{3}a^3\)

Câu 4 : Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi G là trọng tâm tam giác ABC . Mặt phẳng (A'B'G) chia lăng trụ thành 2 phần , tính thể tích phần chứa cạnh AB

A. \(\frac{5a^3\sqrt{3}}{108}\) B. \(\frac{a^3\sqrt{3}}{36}\) C. \(\frac{2a^3\sqrt{3}}{27}\) D. \(\frac{a^3\sqrt{3}}{4}\)

Câu 5 : Tính thể tích V của khối lăng trụ ABC.A'B'C' , tam giác ABC vuông tại B , hình chiếu vuông góc của A lên (ABC) là trung điểm AC . Biết AB = a , BC = \(a\sqrt{3}\) , \(\widehat{\left(A^'B,\left(ABC\right)\right)=45^0}\)

A. V = \(\frac{\sqrt{3}}{8}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

4
NV
22 tháng 8 2020

4.

Qua G kẻ đường thẳng song song AB lần lượt cắt AC và BC tại M và N

\(\Rightarrow A'B'NM\) là thiết diện của (A'B'G) và lăng trụ

Theo Talet ta có \(\frac{CM}{AC}=\frac{CN}{BC}=\frac{2}{3}\Rightarrow CM=CN=\frac{2a}{3}\)

Kéo dài A'M, B'N, C'C đồng quy tại P (theo tính chất giao tuyến 3 mặt phẳng)

Do \(CN//B'C'\Rightarrow\frac{PC}{PC'}=\frac{CN}{B'C'}=\frac{2}{3}\Rightarrow\frac{PC}{PC+CC'}=\frac{2}{3}\)

\(\Rightarrow3PC=2\left(PC+a\right)\Rightarrow PC=2a\)

\(\Rightarrow PC'=3a\)

\(MN=\frac{2}{3}BC\Rightarrow S_{CMN}=\frac{4}{9}S_{ABC}=\frac{4}{9}.\frac{a^2\sqrt{3}}{4}=\frac{a^2\sqrt{3}}{9}\)

\(V_{P.A'B'C'}=\frac{1}{3}PC'.S_{A'B'C'}=\frac{1}{3}.3a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

\(V_{P.CMN}=\frac{1}{3}PC.S_{CMN}=\frac{1}{3}.2a.\frac{a^2\sqrt{3}}{9}=\frac{2a^3\sqrt{3}}{27}\)

\(\Rightarrow V_{CMN.A'B'C'}=\frac{a^3\sqrt{3}}{4}-\frac{2a^3\sqrt{3}}{27}=\frac{19a^3\sqrt{3}}{108}\)

\(\Rightarrow V_{MNABA'B'}=\frac{a^3\sqrt{3}}{4}-\frac{19a^3\sqrt{3}}{108}=\frac{2a^3\sqrt{3}}{27}\)

NV
22 tháng 8 2020

2.

Đề thiếu dữ kiện ko tính được, chỉ tính được trong trường hợp tam giác ABC là vuông cân.

3.

\(AC=BC=a\sqrt{2}\) ; \(AC=AB\sqrt{2}=2a\)

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(ACC'A'\right)\)

\(\Rightarrow\widehat{BA'M}\) là góc giữa A'B và (ACC'A')

\(\Rightarrow\widehat{BA'M}=30^0\)

\(BM=\frac{1}{2}AC=a\)

\(tan\widehat{BA'M}=\frac{BM}{A'M}\Rightarrow A'M=\frac{BM}{tan30^0}=a\sqrt{3}\)

\(A'A=\sqrt{A'M^2-AM^2}=a\sqrt{2}\)

\(V=\frac{1}{2}A'A.AB.BC=a^3\sqrt{2}\)

Ko đáp án nào đúng

24 tháng 6 2019

Chọn D

30 tháng 9 2017

Đáp án là B

5 tháng 4 2019

Chọn đáp án B

11 tháng 8 2019