Chứng tỏ rằng giá trị của biểu thức A= 3+ 3^3+3^5 +3^7 +...+3^29 la boi cua 91
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273
\(A=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)
\(=273+3^6.273+........+3^{24}.273\)
\(=273\left(1+3^6+......+3^{24}\right)\)chia hết cho 273
Ta có:
273=3+3^3+3^5
A=(3+3^3+3^5)+(3^7+3^9+3^11)+...+(3^25+3^27+3^29)
A=1×(3+3^3+3^5)+3^6×(3+3^3+3^5)+...+3^24×(3+3^3+3^5)
A=1×273+3^6×273+...+3^24×273
A=(1+3^6+...+3^24)×273
Suy ra: A chia hết cho 273
a) \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(=\left(5+5^2\right)\cdot\left(1+5^2+...+5^6\right)\)
\(=30\cdot\left(1+5^2+...+5^6\right)\)chia hết cho 30.
b) \(B=3+3^3+3^5+3^7+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{26}\cdot\left(3+3^3+3^5\right)\)
\(=\left(3+3^3+3^5\right)\cdot\left(1+3^6+...+3^{26}\right)\)
\(=273\cdot\left(1+3^6+3^{26}\right)\)chia hết cho 273.