K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Có thể xác định được bằng cách bằng cách sử dụng góc giữa hai cây chống vuông góc với mỗi cánh.

b: Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó

Khi đặt thiết bị lên mp nghiêng (Q) thì ta sẽ có:

\(OM\perp\left(Q\right);ON\perp\left(P\right)\)

\(OM\subset\left(P\right),ON\subset\left(Q\right)\)

=>\(\widehat{\left(P\right),\left(Q\right)}=\widehat{\left(OM;ON\right)}=\widehat{MON}=90^0\)

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)     Nếu a và b cắt nhau tại O thì: \(0^\circ  \le \left( {a,b} \right) \le 90^\circ \)

b)    Nếu a // b thì không có góc tạo bởi a và b

c)     Nếu a và b trùng nhau thì góc giữa a và b bằng \(0^\circ \)

1 tháng 1 2018

Đáp án B

31 tháng 10 2018

Phương pháp:

- Sử dụng phương pháp tọa độ trong không gian, gắn hệ trục tọa độ gốc A và các trục tọa độ sao cho 

 - Sử dụng các công thức điểm, véc tơ, mặt phẳng, góc giữa hai mặt phẳng để tính toán.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ, giả sử ABCD là hình vuông cạnh l,

chiều cao hình chóp SH = h.

7 tháng 7 2017

Chọn B

Thể tích của vật thể

25 tháng 12 2019

21 tháng 3 2018

Đáp án đúng : B

19 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì mặt phẳng (P) qua A và vuông góc với Δ′ nên AA’ thuộc (P). Vì M thuộc  ∆  mà d là hình chiếu vuông góc của  ∆  trên (P) nên M 1 thuộc d. Vì MA ⊥ AA′ ⇒  M 1 A  ⊥  AA′

Mặt khác  M 1 A  ⊥  M′A′ nên ta suy ra  M 1 A  ⊥  (AA′M′). Do đó  M 1 A  ⊥  M′A và điểm A thuộc mặt cầu đường kính M’ M 1

Ta có M′A′  ⊥  (P) nên M′A′  ⊥  A′ M 1 , ta suy ra điểm A’ cũng thuộc mặt cầu đường kính M’ M 1

Ta có (Q) // (P) nên ta suy ra

M M 1  ⊥ (Q) mà MM’ thuộc (Q), do đó  M 1 M  ⊥  MM′

Như vậy 5 điểm A, A’, M, M’,  M 1  cùng thuộc mặt cầu (S) có đường kính M’ M 1 . Tâm O của mặt cầu (S) là trung điểm của đoạn M’ M 1

Ta có M ' M 1 2 = M ' A ' 2 + A ' M 1 2  = M ' A ' 2 + A ' A 2 + AM 1 2 = x 2 + a 2 + x 2 cot 2 α vì M M 1  = x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bán kính r của mặt cầu (S) bằng (M′ M 1 )/2 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12