Cho hình vuông ABCD. Đường thẳng qua A cắt BC và CD lần lượt tại E và F. Chứng minh : 1/AB2 = 1/AE2 + 1/AF2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua A kẻ đường thẳng vuông góc AF cắt đường thẳng CD tại P
Xét hai tam giác vuông ABE và ADP có:
\(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=90^0\\AB=AD\\\widehat{BAE}=\widehat{DAP}\left(\text{ cùng phụ }\widehat{DAE}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABE=\Delta ADP\Rightarrow AP=AE\)
Áp dụng hệ thức lượng trong tam giác vuông APF:
\(\dfrac{1}{AD^2}=\dfrac{1}{AP^2}+\dfrac{1}{AF^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (đpcm)
Bạn tham khảo lời giải ở đường link sau nhé:
Câu hỏi của Thới Nguyễn Phiên - Toán lớp 8 - Học toán với OnlineMath
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
bạn tự vẽ hình nha
qua A kẻ AI vuông góc với EF cắt BC tại I
áp dụng hệ thức lượng vào tam giác vuông AEI có AB là đường cao \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AI^2}\) (1)
de dang chung minh duoc tam giac vuong ABI= tam giac vuong AFD(cgv-gnk)
\(\Rightarrow AF=AI\)
thay vao 1 ta co \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\left(DPCM\right)\)
qua A vẽ đường thẳng vuông góc với AE cắt CD tại G
xét tam giác ABE và tam giác ADG có
góc BAE = góc GAD ( vì cùng phụ với góc DAE )
AB=AD ( vì tứ giác ABCD là hình vuông )
góc ADG = góc ABE = 90 độ
=> tam giác ABE = tam giác ADG (g.c.g)
=> AE=AG => 1/AE^2=1/AG^2 (1)
mặt khác xét tam giác GAF vuông tại A có đường cao AD nên ta có
1/AG^2 + 1/AF^2 = 1/AD^2 (2)
từ (1) và (2) => 1/AD^2 = 1/AE^2 + 1/AF^2 mà AD = AB => 1/AB^2 = 1/AE^2 + 1/AF^2