8x(168:x)=672. Ai giúp em với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left(\frac{168}{x}\right)=672\)
\(\Rightarrow168:x=672:8\)
\(672:168=4\)
Vì vậy x = 8 : 4 = 2
x = 2
Gọi số cần tìm là x, ta có:
120 chia hết cho x
168 chia hết cho x
120 = (2^3).5.3
168 = (2^3).3.7
ƯCLN 120; 168 là: (2^3).3 = 24
x2 - 4xy + 4y2 = 0
<=>( x - 2y)2 = 0
<=> x - 2y = 0
<=> x = 2y
a) Thay x = 2y ta đc :
A = 10y + 3y : 16y
<=> A = \(\frac{163}{16}\)y
b) Thay x = 2y :
A = \(\frac{2y^2}{4y^2}\)+ y2
<=> A = y2 + \(\frac{1}{2}\)
\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)
Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
Chứng minh:
\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)
\(\text{+Nếu }ac+bd>0\)
\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)
Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(ad=bc\)
\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)
\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)
\(=\sqrt{64}=8.\)
Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)
Vậy GTNN của biểu thức là 8.
168:x=672:8
168:x=84
x=168:84
x=2
8x(168:x)=672
168:x=672:8
168:x=84
x=168:84
x=2
Vậy x=2