K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

\(A=4x^2+9y^2-8xy-20y+5\)

\(=\left(4x^2-8xy+4y^2\right)+\left(5y^2-20y+20\right)-15\)

\(=4\left(x-y\right)^2+5\left(y-2\right)^2-15\ge-15\)

\(B=x^2+xy+y^2=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\)

4 tháng 7 2017

sorry nha mik chưa học tới bài này nên ko giúp bạn được

13 tháng 6 2021

`A=16x^2+8x+5`

`=16x^2+8x+1+4`

`=(4x+1)^2+4>=4`

Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`

`B=x^2-x`

`=x^2-x+1/4-1/4`

`=(x-1/2)^2-1/4>=-1/4`

Dấu "=" xảy ra khi `x=1/2`

`C=a^2-2a+b^2+6b+2021`

`=a^2-2a+1+b^2+6b+9+2011`

`=(a-1)^2+(b+3)^2+2011>=2011`

Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)

13 tháng 6 2021

Phần C sao bạn có thể dễ dàng phân tích như vậy được ạ ?

25 tháng 9 2021

a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4

=> GTNN a) =3/4 khi x=-1/2

b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6

=> GTNN b) = -6 khi x=-1/2

c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12

GTNN c) =12 khi x=-1 

d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14

GTNN d) =-14 khi x=2 , y=4

25 tháng 9 2021

\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)

Dấu \("="\Leftrightarrow x=-1\)

\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

1:

=x^2-6x+9-4=(x-3)^2-4>=-4

Dấu = xảy ra khi x=3

3: =-y^2-4y-4+13

=-(y+2)^2+13<=13

Dấu = xảy ra khi y=-2

4: D=x^2-8>=-8

Dấu = xảy ra khi x=0

b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)

c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)

b: Ta có: \(B=-x^2-y^2+2x-6y+9\)

\(=-\left(x^2-2x+y^2+6y-9\right)\)

\(=-\left(x^2-2x+1+y^2+6y+9-19\right)\)

\(=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

21 tháng 8 2023

a. \(x^2-10x+25=\left(x-5\right)^2\)

b.\(4-4x^2+x^4=\left(2-x^2\right)^2\)

c. \(x^2-6y+9y^2=\left(x-3y\right)^2\)

d. \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)

21 tháng 8 2023

a) x2 - 10x + 25x = ( x - 5)2

b) 4 - 4x2 + x4 = ( 2 - x2 )2

c) x2 - 6xy + 9y2 = (x - 3y )2

d_ (2x + y2 ). (2x - y2 ) = 4x- y4

6 tháng 1 2018

P=x2+20y2+8xy-4y+2009=(x2+8xy+16y2)+(4y2-4y+1)+2008=(x+4y)2+(2y-1)2+2008 \(\ge\)2008
Dấu "=" xảy ra khi x=-2;y=1/2
Vậy min P=2008

10: \(x\left(x-y\right)+x^2-y^2\)

\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+x+y\right)\)

\(=\left(x-y\right)\left(2x+y\right)\)

11: \(x^2-y^2+10x-10y\)

\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+10\right)\)

12: \(x^2-y^2+20x+20y\)

\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)

\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+20\right)\)

13: \(4x^2-9y^2-4x-6y\)

\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)

\(=\left(2x+3y\right)\left(2x-3y-2\right)\)

14: \(x^3-y^3+7x^2-7y^2\)

\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)

15: \(x^3+4x-\left(y^3+4y\right)\)

\(=x^3-y^3+4x-4y\)

\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)

16: \(x^3+y^3+2x+2y\)

\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)

17: \(x^3-y^3-2x^2y+2xy^2\)

\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)

\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)

18: \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

8 tháng 12 2023

Phân tích đa thức thành nhân tử nha