1/12 tất cả mũ 10 và 1/2 tất cả mũ 50 so sánh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2}\right)^{40}=\left(\frac{1}{2}\right)^{10\cdot4}=\left(\frac{1}{16}\right)^{10}\)
Mà ta có
\(\left(\frac{1}{32}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{32}\right)^{10}\)
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{83^{13}}\)
mình chắc chắn luôn
(100^99+99^100)^100
(100^100+99^100)^99
ta có : (100^99+99^100)^100=100^9900+99^10000
(100^100+99^100)^99=100^9900+99^9900
=)100^9900=100^9900; 99^10000>99^9900(vì 10000>9900)
=)(100^99+99^100)^100>(100^100+99^100)^99
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
bạn nào làm được thì giúp mình với còn bài này thì mình không biết làm. sorry nha
AI NÓI TỚ NÓI SAI, CÓ NÓI VỀ BÀI ĐÂU MÀ SAI ĐIÊN À MẤY BẠN KIA
ta có:\(\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1^4}{2^4}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}=\dfrac{1^{40}}{12^{40}}=\dfrac{1}{2^{40}}\)
ta có:
\(\left(\dfrac{-1}{2}\right)^{500}=\left(\dfrac{1}{2}\right)^{500}=\dfrac{1^{500}}{2^{500}}=\dfrac{1}{2^{500}}\)
Vì 40<500
⇒2\(^{40}< 2^{500}\)
⇒\(\dfrac{1}{2^{40}}>\dfrac{1}{2^{500}}\)
⇒\(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)
Vậy \(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)
\(+,\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{\left(-1\right)^4}{2^4}\right)^{10}=\left[\left(\dfrac{-1}{2}\right)^4\right]^{10}=\left(\dfrac{-1}{2}\right)^{40}\)
Vì 40<500→\(\left(\dfrac{-1}{2}\right)^{40}< \left(\dfrac{-1}{2}\right)^{500}hay\left(\dfrac{-1}{16}\right)^{10}< \left(\dfrac{-1}{2}\right)^{500}\)
a.(3^2+4^2).x=10^2
(9+16).x =100
25.x =100
x =100:25
x =4
b.(x-5)^2 =81
x-5 =9
x =9+5
x =14
c.(2x+1)^3 = 343
2x+1 = 7
2x =7-1
2x =6
x =6:2
x = 3
\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)
1/12>1/32
=>(1/12)^10>(1/32)^10
=>(1/12)^10>(1/2)^50
Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)
Do \(12< 32\Rightarrow12^{10}< 32^{10}\)
\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)