K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)

1/12>1/32

=>(1/12)^10>(1/32)^10

=>(1/12)^10>(1/2)^50

19 tháng 8 2023

Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)

\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)

Do \(12< 32\Rightarrow12^{10}< 32^{10}\)

\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)

14 tháng 9 2017

\(\left(\frac{1}{2}\right)^{40}=\left(\frac{1}{2}\right)^{10\cdot4}=\left(\frac{1}{16}\right)^{10}\)

Mà ta có

\(\left(\frac{1}{32}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)

\(\Rightarrow\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{32}\right)^{10}\)

15 tháng 11 2018

undefined

17 tháng 11 2018

còn 3 câu sau thì sao vậy bn

29 tháng 7 2017

Ta có :

\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)

\(\Rightarrow\frac{1}{243^9}>\frac{1}{83^{13}}\)

mình chắc chắn luôn

25 tháng 4 2020

-https://olm.vn/hoi-dap/detail/77727486175.html

25 tháng 7 2020

(100^99+99^100)^100

(100^100+99^100)^99

ta có : (100^99+99^100)^100=100^9900+99^10000

           (100^100+99^100)^99=100^9900+99^9900

=)100^9900=100^9900; 99^10000>99^9900(vì 10000>9900)

=)(100^99+99^100)^100>(100^100+99^100)^99

24 tháng 4 2017

1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)

      =(1-1/3)....0.....(1-9/5)

      =0

     =>đpcm.

b)ta xét:

1/22 = 1/2x2 < 1/1x2

.............

1/8= 1/8x8 <1/7x8

=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8

<=> B <1 - 1/2 + 1/2  - 1/3  + ... + 1/7 - 1/8

<=> B < 1 - 1/8 = 7/8 < 1

=> B < 1 => đpcm

2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)

      Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)

Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)

=> A > B

   b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C

=> C > D

c)gọi 2010 là a

ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)

áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)

=> E > F

10 tháng 5 2019

bạn nào làm được thì giúp mình với còn bài này thì mình không biết làm. sorry nha

22 tháng 10 2019

AI NÓI TỚ NÓI SAI, CÓ NÓI VỀ BÀI ĐÂU MÀ SAI ĐIÊN À MẤY BẠN KIA

6 tháng 10 2018

ta có:\(\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1^4}{2^4}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}=\dfrac{1^{40}}{12^{40}}=\dfrac{1}{2^{40}}\)

ta có:

\(\left(\dfrac{-1}{2}\right)^{500}=\left(\dfrac{1}{2}\right)^{500}=\dfrac{1^{500}}{2^{500}}=\dfrac{1}{2^{500}}\)

Vì 40<500

⇒2\(^{40}< 2^{500}\)

\(\dfrac{1}{2^{40}}>\dfrac{1}{2^{500}}\)

\(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)

Vậy \(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)

6 tháng 10 2018

\(+,\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{\left(-1\right)^4}{2^4}\right)^{10}=\left[\left(\dfrac{-1}{2}\right)^4\right]^{10}=\left(\dfrac{-1}{2}\right)^{40}\)

Vì 40<500→\(\left(\dfrac{-1}{2}\right)^{40}< \left(\dfrac{-1}{2}\right)^{500}hay\left(\dfrac{-1}{16}\right)^{10}< \left(\dfrac{-1}{2}\right)^{500}\)

11 tháng 8 2018

a.(3^2+4^2).x=10^2

(9+16).x     =100

25.x           =100

x                =100:25

x                =4

b.(x-5)^2       =81

x-5             =9

x                =9+5

x                =14

c.(2x+1)^3 = 343

2x+1          = 7

2x              =7-1

2x              =6

x                =6:2

x                = 3

11 tháng 8 2018

(9+16).x=100

25.x=100

x=100:25

x=4