K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Từ \(a^2+ab-6b^2=0\Rightarrow\left(a^2+3ab\right)-\left(2ab+6b^2\right)=0\)

\(\Leftrightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)

Với \(a=-3b\Rightarrow S=\frac{-3b+3b}{5.\left(-3b\right)+b}=\frac{0}{-14b}=0\)

Với \(a=2b\Rightarrow S=\frac{2b+3b}{5.2b+b}=\frac{5b}{11b}=\frac{5}{11}\)

30 tháng 7 2016

Có bđt x2 + y2 \(\ge\)( x + y) /2 ( * )

( * ) \(\Leftrightarrow\)2x+ 2y2\(\ge\)x+ 2xy + y\(\Leftrightarrow\)x2 - 2xy +y2 \(\ge\)0  \(\Leftrightarrow\)( x- y)2 \(\ge\)

Dấu "=" xảy ra khi x = y =1

Thay bđt ( * ) vào bài toán ta có: 

a4 + b4 \(\ge\)(a2 + b2)2 / 2 \(\Leftrightarrow\)a+ b4 \(\ge\)[(a + b)/2]/2 = 2 ( đpcm) 

Dấu "=" xảy ra khi a = b = 1

Thay a = b = 1 vào bt ta có: 

\(\frac{5a^2}{b}\)\(\frac{3b^2}{a^2}\)\(\ge\)8

15 tháng 4 2017

bài này dễ tự làm đi

16 tháng 4 2017

có làm được ko ?

29 tháng 6 2016

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

2 tháng 3 2021
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi