mn giúp mk vs : giải PT
2x^3 - 3x^2 - 5 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
\(1,\left(3x+2\right)\left(5-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)
\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)
\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{9}{46}\)
Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)
\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)
\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)
\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)
\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)
\(\Leftrightarrow6x-4=16\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)
\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Rightarrow5x-5=4x+8\)
\(\Rightarrow x=13\left(tmdk\right)\)
Vậy \(S=\left\{13\right\}\)
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
Bài 4:
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=HB\cdot HC\)
B1 Tìm ĐKXĐ
B2 Đặt pt đã cho là pt (1)=>pt (1) <=>\(\frac{x+3}{\sqrt{4x-1}-\sqrt{3x-2}}\) =5
B3 Trục căn thứ ở mẫu => (1) <=> \(\sqrt{4x+1}+\sqrt{3x-2}\)=5
B4 Bình phương 2 vế được (1)<=>\(26-7x\)=\(2\sqrt{12x^2-5x-2}\)
B5 Tiếp tục bình phương hai vế ta tìm được x=2 (Thỏa mãn)