Cho x, y, z > 0 thỏa mãn xy + yz + zx = 1. Tìm giá trị nhỏ nhất của M = x4 + y4 + z4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Ta có \(A=xy+yz+2zx\)
\(\Rightarrow A+1=x^2+y^2+z^2+xy+yz+2zx\)
\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}y=0\\x=-z\end{cases}}\)
Ta có : \(\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge\frac{-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\)
Lại có : \(\left(x+z\right)^2\ge0\Rightarrow xz\ge\frac{-\left(x^2+z^2\right)}{2}=\frac{y^2-1}{2}\ge-\frac{1}{2}\)
Khi đó : \(xy+yz+2zx\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=o\\x^2=z^2=\frac{1}{2}\end{cases}}\)
Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)
Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);
\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)
Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)
Vậy Min P = 1 tại x= y = z = 1/3
Ta có :
\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :
\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(GTNN_M=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)
( Ko bít đúng Ko ) :)
cảm ơn nha