Biết rằng \({10^\alpha } = 2;{10^\beta } = 5\).
Tính \({10^{\alpha + \beta }};{10^{\alpha - \beta }};{10^{2\alpha }};{10^{ - 2\alpha }};{1000^\beta };0,{01^{2\alpha }}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
$16^{\alpha }+16^{-\alpha } = (4^2)^{\alpha }+(4^2)^{-\alpha } = 4^{2\alpha }+4^{-2\alpha }$
$4^{2\alpha }+4^{-2\alpha } = 4^{2\log_4{\frac{1}{5}}}+4^{-2\log_4{\frac{1}{5}}} = \left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^{-2} = \frac{1}{25}+25 = \frac{26}{25}$
b)
$\left(2^{\alpha }+2^{-\alpha }\right)^2 = \left(\sqrt{4}\right)^{\alpha }+\left(\sqrt{4}\right)^{-\alpha } = 4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}}$
$4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}} = 4^{\frac{\log_4{\frac{1}{5}}}{2}}+4^{-\frac{\log_4{\frac{1}{5}}}{2}} = \left(\frac{1}{5}\right)^{\frac{1}{2}}+\left(\frac{1}{5}\right)^{-\frac{1}{2}} = \sqrt{\frac{1}{5}}+\frac{1}{\sqrt{5}} = \frac{2}{\sqrt{5}}$
a. π < α < \(\frac{3\pi}{2}\) => cosα <0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{-\sqrt{51}}{10}\) => tanα = \(\frac{7\sqrt{51}}{51}\)
b. 0 < α < \(\frac{\pi}{2}\) => sinα > 0
Ta có: sin2α + cos2α =1 => sinα = \(\frac{3\sqrt{17}}{13}\) => tanα = \(\frac{3\sqrt{17}}{4}\)
c. \(\frac{\pi}{2}< \alpha< \pi\) => cosα <0 ; sinα > 0
Ta có: \(1+tan^2\alpha=\frac{1}{cos^2\alpha}\) => cosα = \(\frac{-7}{\sqrt{274}}\) => sinα = \(\frac{15}{\sqrt{274}}\)
d. \(\frac{3\pi}{2}< \alpha< 2\pi\) => cosα > 0 ; sinα < 0
Ta có: 1+ cot2α = \(\frac{1}{sin^2\alpha}\)=> sinα = \(\frac{-\sqrt{10}}{10}\) => cos\(\alpha\) = \(\frac{3\sqrt{10}}{10}\)
ap dung sin2a+cos2a=1 =>4cos2a -6sin2a=4 -4sin2a-6sin2a=4-10sin2a=4-10.1/25=3,6
a: cos a=0.8
tan a=0,6/0,8=3/4
b: \(sina=\sqrt{1-0.7^2}=\dfrac{\sqrt{51}}{10}\)
\(tana=\dfrac{\sqrt{51}}{7}\)
c: \(1+tan^2a=\dfrac{1}{cos^2a}=1.64\)
\(\Leftrightarrow cos^2a=\dfrac{25}{41}\)
=>\(cosa=\dfrac{5}{\sqrt{41}}\)
=>\(sina=\sqrt{1-\dfrac{25}{41}}=\sqrt{\dfrac{16}{41}}\)
\(10sin^2a+6\left(1-sin^2a\right)=8\)
\(\Leftrightarrow4sin^2a=2\)
\(\Rightarrow sin^2a=\frac{1}{2}\)
\(\Rightarrow sina=\frac{\sqrt{2}}{2}\Rightarrow a=45^0\)
\(\frac{sin^2a-cos^2a}{sin^2a+cos^2a+2sina.cosa}=\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{\left(sina+cosa\right)^2}=\frac{sina-cosa}{sina+cosa}\)
\(=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}\)
(tan^2 a)/(1 + tan^2 a) * (1 + cot^2 a)/(cot^2 a) = (1 + tan^4 a)/(tan^2 a + tan^2 a)
Ta có:
\(10^{\alpha}=2\Rightarrow\alpha=log_{10}2\)
\(10^{\beta}=5\Rightarrow\beta=log_{10}5\)
Kết quả:
\(10^{\alpha+\beta}=10^{log_{10}2+log_{10}5}=10\)
\(10^{2\cdot log_{10}2}=4\)
\(1000^{log_{10}5}=125\)
\(0,01^{2\cdot log_{10}2}=\dfrac{1}{16}\)