Giải phương trình :\(\sqrt{2010-x}+\sqrt{x-2008}=x^2-4018x-4036083\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy - Schwarz ta có :
\(VT^2=\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\)
\(\le\left(1+1\right)\left(2010-x+x-2008\right)\)
\(=2.\left(2010-2008\right)=2.2=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có :
\(VP=x^2-4018x+4036083\)
\(=x^2-4018x+4036081+2\)
\(=\left(x-2009\right)^2+2\ge2\)
Suy ra \(VT\le VP=2\) nên xảy ra khi :
\(VT=VP=2\Rightarrow\left(x-2009\right)^2+2=2\Rightarrow x=2009\)
Chúc bạn học tốt !!!
Điều kiễn xác định của phương trình : \(2008\le x\le2010\)
Xét vế trái của phương trình và áp dụng bất đẳng thức Bunhiacopxki : \(\left(1.\sqrt{2010-x}+1.\sqrt{x-2008}\right)^2\le\left(1^2+1^2\right)\left(2010-x+x-2008\right)=4\)
\(\Rightarrow\sqrt{2010-x}+\sqrt{x-2008}\le2\)(1)
Xét vế phải của phương trình : \(x^2-4018x+4036083=\left(x-2009\right)^2+2\ge2\)(2)
Từ (1) và (2) ta có phương trình đầu tương đương với \(\hept{\begin{cases}\sqrt{2010-x}+\sqrt{x-2008}=2\\x^2-4018x+4036083=2\end{cases}\Leftrightarrow}x=2009\) (TMĐK)
Vậy phương trình có nghiệm x = 2009
Áp dụng BĐT Cauhy-Schwarz ta có:
\(VT^2=\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\)
\(\le\left(1+1\right)\left(2010-x+x-2008\right)\)
\(=2\cdot\left(2010-2008\right)=2\cdot2=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-4018x+4036083\)
\(=x^2-4018x+4036081+2\)
\(=\left(x-2009\right)^2+2\ge2\)
Suy ra \(VT\le VP=2\) nên xảy ra khi
\(VT=VP=2\Rightarrow\left(x-2009\right)^2+2=2\Rightarrow x=2009\)
đk: \(2008\le x\le2010\)
ta có: \(\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2=2+2\sqrt{\left(2010-x\right)\left(x-2008\right)}\)
\(\le2+2010-x+x-2008=4\) (bđt Cauchy)
=> \(VT^2\le4\Rightarrow VT\le2\)
Mà \(x^2-4018x+4036083=\left(x-2009\right)^2+2\ge2\)
Do đó pt có nghiệm khi VT=VP=2 => x=2009 (tm)
Đặt a = \(\sqrt{2010-x}\); b = \(\sqrt{x-2008}\)
Từ đó ta có a2 + b2 = 2 (1)
Ta có x2 - 4018x + 4036083 = (x2 - 2008x) + (-2010x + 4036080) + 3 = - (x - 2008)(2010 - x) + 3
Từ đó PT <=> a + b = - ab + 3 (2)
Từ (1) và (2) ta có (a;b) = (1;1)
=> x = 2009
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)
\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)
\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)
\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)
Đặt \(2008\sqrt{1-x}=y\ge0\)
Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)
Từ đó suy ra \(x=\frac{16120229}{16128256}\)
Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.
Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\)
\(\le\left(1+1\right)\left(2010-x+x-2008\right)\)
\(=2\cdot\left(2010-2008\right)=2\cdot2=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-4018x+4036083\)
\(=x^2-4018x+4036081+2\)
\(=\left(x-2009\right)^2+2\ge2\)
Suy ra \(VT\le VP=2\) xảy ra khi \(VT=VP=2\)
\(\Rightarrow\left(x-2009\right)^2+2=2\Rightarrow x-2009=0\Rightarrow x=2009\)