Cho tam giác ABC vuông góc tại C, từ góc A và góc B kẻ 2 tia phân giác cắt AC ở E, cắt BC ở D. Từ D và E hạ đường vuông góc xuống AB, cắt AB ở M và N. Tính góc MCN!! GẤP GẤP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nhìn hình của cô nhé:
Xét \(\Delta BEN\)và\(\Delta BEC\)Ta có:
BE chung
góc CEB= góc NBE(do be là phân giác góc B)
=>\(\Delta BEN=\Delta BEC\left(CH-GN\right)\)
=> BN=BC(c.t.ứ)
=>\(\Delta BCN\) cân ở B => góc CNB = góc NCB =\(\frac{180^0-gócABC}{2}\)
bằng cách chứng minh tương tự:
góc AMC=góc ACM = \(\frac{180^0-gócBAC}{2}\)
=> góc AMC + góc CNB =\(\frac{180^0-gócABC+180^0-gócBAC}{2}=\frac{360^0-90^0}{2}=135^0\)(do tam giác ABC vuông ở C)
Mà góc MCN+góc AMC + góc CNB=1800
=>góc MCN =350
+) Vì AD là phân giác của góc A ; DM là khoảng cách từ D xuống cạnh AB; DC là khoảng cách từD xuống cạnh AC
=> DM = DC
=> tam giác DCM cân tại D
=> góc C1 = \(\frac{180^o-CDM}{2}\)
Mà góc CDM là góc ngoài của tam giác DMB => góc CDM = DBM + BMD = DBM + 90o
=> Góc C1 = \(\frac{180^o-CDM}{2}=\frac{180^o-\left(DBM+90^o\right)}{2}=\frac{90^o-DBM}{2}\) (1)
+) Tương tự, BE là phân giác của góc B
=> EC = EN => tam giác ACN cân tại E
=> Góc C3 = \(\frac{180^o-CEN}{2}\)
mà góc CEN = EAN + ANE = EAN + 90o
=> góc C3 = \(\frac{180^o-CEN}{2}=\frac{180^o-\left(EAN+90^o\right)}{2}=\frac{90^o-EAN}{2}\) (2)
+) góc MCN = 90o - (C1 + C3). Từ (1)(2)
=> Góc MCN = 90o - (\(\frac{90^o-DBM}{2}\) + \(\frac{90^o-EAN}{2}\) )
= 90o - \(\frac{180^o-\left(DBM+EAN\right)}{2}\) = 90o - \(\frac{180^o-90^o}{2}\) = 45o
a) Vì AB // CN (gt)
=> AE //NC
=> EB//NC
=> MCN = EBM (so le trong)
Xét ∆EBM và ∆MCN ta có :
BM = MC (M là trung điểm BC )
BME = NMC ( đối đỉnh)
MCN = EBM (cmt)
=> ∆EBM = ∆MCN (g.c.g)(dpcm)