K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

o o A B C M D

A) Vì AD và BD  là 2 tiếp tuyến của đt ( O)

=> Góc DAO = góc DBO =90 

Xét tứ giác ADBO  có

Góc DAO + góc DBO = 90+90 = 180

=> Tứ giác ADBO nội tiếp 

b)Xét tam giác BDM và tam giác CBD có

- Góc D chung 

- Góc DBM = góc BCD (  cùng chắn cung BM )

=> Tam giác BDM đồng dạng với tam giác CBD 

=> \(\frac{BD}{CD}=\frac{DM}{BD}\)

=>\(BD^2=DM.DC\)

Ta có  \(BD^2=BD.BD\)

Mà BD = AD ( 2 tiếp tuyến cắt nhau )

=>\(BD^2=AD.BD\)

Thay vào ta được 

\(AD.BD=DM.DC\)

C) Ta có tam giác ABC  cân tại A => AB = AC 

=> cung AB = cung AC

=> góc DAB = góc ABC ( góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp chắn các cung bằng nhau )

Mà 2 góc ở vị trí so le trong 

=> AD song song BC 

=> góc ADC = góc  DCB ( 2 GÓC SO LE TRONG )

Mà góc DCB = góc DBM 

=> Góc DBM = Góc ADC 

..... Đúng thì ủng hộ nha ....

5 tháng 2 2022

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

5 tháng 2 2022

này giống trên mạng r 

3 tháng 12 2016

các bạn giúp mình nhé sáng thứ tư mình nộp bài rồi cảm ơn

 

7 tháng 1 2018

Đáp án A

Vì tam giác ABC cân tại A nên AB = AC

Suy ra: hai dây AB và AC cách đều tâm.

Ta chưa thể so sánh độ dài AB và BC; AC và BC nên ta chưa thể kết luận dây nào gần tâm hơn, dây nào xa tâm hơn hay các dây cách đều tâm.

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{BC}{2}\cdot h\)

Bán kính là:

\(R=\dfrac{a\cdot b\cdot c}{4\cdot S}=\dfrac{b\cdot b\cdot BC}{4\cdot\dfrac{BC\cdot h}{2}}=\dfrac{b\cdot b\cdot BC}{2\cdot BC\cdot h}=\dfrac{b^2}{2h}\)

22 tháng 8 2021

Ta có: O là trọng tâm của △ ABC ⇒ AO là đường trung tuyến của △ ABC ⇒ AO là đường cao của △ ABC (  Trong tam giác cân đường đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao và đường trung trực )

⇒ HB = HC = \(\dfrac{BC}{2}\)

⇒ OH = \(\dfrac{AH}{3}=\dfrac{h}{3}\) ( trong tam giác 3 đường trung tuyến cắt nhau tại 1 điểm gọi là trọng tâm của tam giác và cách đáy 1 khoảng = \(\dfrac{1}{3}\) chiều dài mỗi đường )

Xét tam giác vuông ABH có

\(BH^2=AB^2+AH^2=b^2+h^2\)

Xét tam giác vuông OBH có

BO = R = \(\sqrt{BH^2+OH^2}=\sqrt{b^2-h^2+\dfrac{h^2}{9}}=\dfrac{1}{3}\sqrt{9b^2-8h^2}\)

23 tháng 11 2023

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)