K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Đặt :

\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+..............+\frac{1}{7^{100}}\)

\(\Leftrightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.............+\frac{1}{7^{99}}\)

\(\Leftrightarrow7A-A=\left(1+\frac{1}{7}+\frac{1}{7^2}+........+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+..........+\frac{1}{7^{100}}\right)\)

\(\Leftrightarrow6A=1-\frac{1}{7^{100}}\)

\(\Leftrightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

3 tháng 7 2017

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

22 tháng 7 2018

\(7^50\) là cái gì????????

22 tháng 7 2018

\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^5}\)

\(\Rightarrow7A=1+\frac{1}{7}+...+\frac{1}{7^4}\)

\(\Rightarrow7A-A=1-\frac{1}{7^5}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^5}}{6}\)

27 tháng 1 2015

a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007


=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006

=>(7-1)S=6-(1/7)^2007

=>S=1-(-1/7^2007/6)

11 tháng 1 2020

Đặt  \(E=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\)

\(\Rightarrow7E=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\)

\(\Rightarrow7E-E=\left(1+\frac{1}{7}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6E=1-\frac{1}{7^{100}}\)

\(\Rightarrow E=\frac{1-\frac{1}{7^{100}}}{6}\)

\(\Rightarrow A=\left(36-\frac{36}{7^{100}}\right):\frac{1-\frac{1}{7^{100}}}{6}\)

\(\Rightarrow A=36\left(1-\frac{1}{7^{100}}\right).\frac{6}{1-\frac{1}{7^{100}}}\)

\(\Rightarrow A=36.6=216\)

26 tháng 10 2020

A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)

Câu b tương tự nha

26 tháng 10 2020

a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)

\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)