K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

\(318-5\left(x-64\right)=103\)

\(\Rightarrow5\left(x-64\right)=318-103\)

\(\Rightarrow5\left(x-64\right)=215\)

\(\Rightarrow x-64=43\)

\(\Rightarrow x=43+64\)

\(\Rightarrow x=107\)

_____________

\(4^x\cdot5+216=296\)

\(\Rightarrow4^x\cdot5=296-216\)

\(\Rightarrow4^x\cdot5-80\)

\(\Rightarrow4^x=16\)

\(\Rightarrow4^x=4^2\)

\(\Rightarrow x=2\)

___________

\(376-6^x:3=364\)

\(\Rightarrow6^x:3=376-364\)

\(\Rightarrow6^x:3=12\)

\(\Rightarrow6^x=36\)

\(\Rightarrow6^x=6^2\)

\(\Rightarrow x=2\)

___________

\(\left(4x-1\right)^2=121\)

\(\Rightarrow\left(4x-1\right)^2=11^2\)

\(\Rightarrow\left[{}\begin{matrix}4x-1=11\\4x-1=-11\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x=12\\4x=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

17 tháng 8 2023

107

2

2

TH1: 3; TH2: -5/2

8 tháng 10 2016

tui cũng đang bí

8 tháng 10 2016

\(2^x=16\Leftrightarrow2^x=2^4\Leftrightarrow x=4\)

\(2^x=128\Leftrightarrow2^x=2^7\Leftrightarrow x=7\)

b), c) tương tự

d) \(5^{2x}=625\Leftrightarrow5^{2x}=5^4\Leftrightarrow2x=4\Leftrightarrow x=2\)

e) tương tự d

29 tháng 7 2023

a, 273 : 3 =  ( 33)3 : 35 = 39 : 35 = 34

b, 72 . 343 . 4930 = 72. 73.(72)3  = 711

c, 625 : 53 = 54 : 53 =  5

d, 1 000 000 : 103 = 106 . 103 = 103

e, 11: 121= 115 : 112 = 113

f, 87 : 64 :8 = 87 : 82 : 81 = 84

i, 1024 . 16 : 26  = 210 . 23 : 26 = 27

29 tháng 7 2023

B2:

 số chính phương là:

4 ; 121 ; 196 ; 225.

27 tháng 7 2021

a, \(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2=\left(7x-5\right)^2\)

Thay x = 5 vào biểu thức trên : \(\left(35-5\right)^2=30^2=900\)

b, \(x^3+12x^2+48x+64=\left(x+4\right)^3\)

Thay x = 6 vào biểu thức trên ta được : \(\left(6+4\right)^3=1000000\)

3, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

Thay x = -6 ; y = 2 vào biểu thức trên ta được : \(\left(-12+2\right)^2=100\)

27 tháng 7 2021

các bạn ơi

2 tháng 6 2018

1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)

2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)

5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)

7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)

\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)

\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

2 tháng 6 2018

|2 - x|2 + 6x - 3 = 0

<=> (x - 2)2 + 6x - 3 = 0

<=> x2 - 4x + 4 + 6x - 3 = 0

<=> x2 + 2x + 1 = 0

<=> (x + 1)2 = 0

<=> x + 1 = 0

<=> x = -1

Bắt phải thể hiện -_-

23 tháng 8 2023

a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)

b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)

c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)

d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)

f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)

g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)

h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)

i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

23 tháng 8 2023

4n  =  4096 

4n = 212

n = 12

5n = 15625 

5n = 56

n   = 6

6n+3 = 216

6n+3 = 23.33

6n+3 = 63

n + 3 = 3

 

 

7 tháng 8 2024

  Bài 1:

2\(x\) = 4

2\(^x\) = 22

 \(x=2\)

Vậy \(x=2\)

7 tháng 8 2024

Bài 2:

2\(^x\) = 8

2\(^x\) = 23

\(x=3\)

Vậy \(x=3\)

10 tháng 3 2017

Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)

B) Tính M(x) - N (x) - P(x)

ok rồi giúp mình với nha

21 tháng 9 2020

a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )

= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x

= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x

= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )

= -38x - 34

b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )

= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )

= 8x2 + 40x + 50 + 3( 16x2 - 1 )

= 8x2 + 40x + 50 + 48x2 - 3

= 56x2 + 40x + 47

c) ( x - 1 )3 - x( x - 3 )2 + 1

= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1

= x3 - 3x2 + 3x - x3 + 6x2 - 9x

= 3x2 - 6x

d) ( x + 2 )3 - x2( x + 6 ) 

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= 12x + 8

e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2

= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= -3x3 + 2x2 - 5x - 5 

f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )

= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac

= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac

= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac

= a2

21 tháng 9 2020

a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)

Dùng hẳng đẳng thức thứ nhất + hai :

\(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)

\(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)

\(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)

\(-38x-34\)

b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)

Dùng đẳng thức thứ 1 + 3

= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]

= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)

= 8x2 + 40x + 50 - (3 - 48x2)

= 8x2 + 40x + 50 - 3 + 48x2

= 56x2 + 40x + 47

c) (x - 1)3 - x(x - 3)2 + 1

Dùng đẳng thức 2 + 5:

= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1

= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1

= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)

= 3x2 - 6x

d) (x + 2)3 - x2(x + 6)

= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8

e) Dùng đẳng thức thứ 3,4 và 2

= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)

= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)

= 2x2 - 5 - 3x3 - 5x

f) Đặt \(a+b-c=A\)

\(b-c=B\)

\(A^2-B^2-2AB\)

\(A^2-2AB+\left(-B\right)^2\)

\(=A^2-2AB+B^2\)

= (A - B)2

= (a + b - c - (b - c))2

= (a + b - c - b + c)2

= a2