em xin giải chi tiết bài này em cảm ơn ạaaTT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x}{9}=\dfrac{5}{3}\\ \Leftrightarrow x=9\cdot\dfrac{5}{3}\\ \Leftrightarrow x=15\\ b,\dfrac{17}{x}=\dfrac{85}{105}\\ \Leftrightarrow x=17\cdot\dfrac{105}{85}\\ \Leftrightarrow x=21\\ c,\dfrac{x}{8}+\dfrac{2}{3}=\dfrac{7}{6}\\ \Leftrightarrow\dfrac{x}{8}=\dfrac{1}{2}\\ \Leftrightarrow x=4\\ d,\dfrac{3}{x-7}=\dfrac{27}{135}\\ \Leftrightarrow x-7=15\\ \Leftrightarrow x=22\)
\(e,\dfrac{75}{20-x}=\dfrac{3}{2}\times10\\ \Leftrightarrow\dfrac{75}{20-x}=15\\ \Leftrightarrow20-x=5\\ \Leftrightarrow x=15\\ f,\left(x-50\%\right)\times\dfrac{5}{3}=\dfrac{7}{4}-0,5\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{5}{4}\\ \Leftrightarrow x-\dfrac{1}{2}=\dfrac{3}{4}\\ \Leftrightarrow x=\dfrac{5}{4}\\ g,\left(\dfrac{2}{15}+\dfrac{3}{35}+\dfrac{2}{63}\right):x=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{2}{9}:x=\dfrac{1}{18}\\ \Leftrightarrow x=4\)
\(h,\left[\left(x-\dfrac{1}{2}\right):6+4\right]\times\dfrac{2}{3}=0,6\times\dfrac{40}{6}\\ \Leftrightarrow\left[\left(x-\dfrac{1}{2}\right):6+4\right]\times\dfrac{2}{3}=4\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right):6+4=6\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right):6=2\\ \Leftrightarrow x-\dfrac{1}{2}=12\\ \Leftrightarrow x=\dfrac{25}{2}\)
3 ) Ngày thứ nhất cửa bán được
42 x \(\dfrac{2}{7}=12\) (bao đường)
Ngày thứ hai cửa hàng bán được
(42 - 12) x \(\dfrac{3}{5}\) = 18 (bao đường)
Cửa hàng còn lại số bao đường
42 - 12 - 18 = 12 (bao đường)
Đáp số 12 bao đường
Tỉ số cam và xoài là
\(\dfrac{1}{2}:\dfrac{2}{5}=\dfrac{5}{4}\)
Số cam là
72: ( 5+4) x 5 = 40 (cam)
Số xoài là
72 - 40 = 32 (xoài)
Đáp số : xoài 32 quả
cam 40 quả
\(x=\left(\dfrac{1}{2}\right)^3:\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^{3-1}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
a.
Hệ có nghiệm duy nhất khi:
\(\dfrac{m}{2}\ne\dfrac{1}{-1}\Rightarrow m\ne-2\)
b.
Hệ có vô số nghiệm khi:
\(\dfrac{1}{1}=\dfrac{m}{-1}=\dfrac{3}{3}\Rightarrow m=-1\)
c.
Hệ vô nghiệm khi:
\(\dfrac{2}{-4}=\dfrac{-1}{2}\ne\dfrac{-m}{4}\Rightarrow m\ne2\)
\(n_{Fe}=\dfrac{5,6}{56}=0,1mol\)
\(n_S=\dfrac{4,8}{32}=0,15mol\)
\(Fe+S\underrightarrow{t^o}FeS\)
0,1 0,15 0,1
\(FeS+2HCl\rightarrow FeCl_2+H_2S\uparrow\)
0,1 0,1 0,1
\(V_Y=0,1\cdot22,4=2,24l\)
\(m_Z=m_{FeCl_2}=0,1\cdot127=12,7g\)
\(a,A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{99\times100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}\\ b,B=\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+...+\dfrac{1}{97\times100}\\ =\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{100}\right)\\ =\dfrac{1}{3}\cdot\dfrac{99}{100}\\ =\dfrac{33}{100}\)
\(c,C=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\\ =\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\\ \Rightarrow2C=1+\dfrac{1}{2}+...+\dfrac{1}{2^6}\\ \Rightarrow2C-C=1-\dfrac{1}{2^7}\\ \Rightarrow C=\dfrac{127}{128}\)
\(d,D=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+...+\dfrac{2}{99\times100}\\ =2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\cdot\left(1-\dfrac{1}{100}\right)\\ =\dfrac{99}{55}\)
\(e,E=\dfrac{1}{10}+\dfrac{1}{40}+...+\dfrac{1}{340}\\ =\dfrac{1}{2\times5}+\dfrac{1}{5\times8}+...+\dfrac{1}{17\times20}\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\\ =\dfrac{1}{3}\cdot\dfrac{9}{20}\\ =\dfrac{3}{20}\)