Nếu đường thẳng a thuộc mặt phẳng (P) và mặt phẳng (Q) song song với (P) thì giữa d(a, (Q)) và d((P),(Q)) có mối quan hệ gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left. \begin{array}{l}a \bot \left( P \right)\\m \subset \left( P \right)\end{array} \right\} \Rightarrow a \bot m \Rightarrow \left( {a,m} \right) = {90^0}\)
a // b \( \Rightarrow \left( {a,m} \right) = \left( {b,m} \right) = {90^0}\) mà đường thẳng m bất kì thuộc mặt phẳng (P)
\( \Rightarrow \) b \( \bot \) (P).
Đáp án B.
Theo định lý, nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q), do đó nếu lấy mọi đường thẳng nằm trong mặt phẳng (P) thì tồn tại hai đường thẳng cắt nhau thỏa mãn định lý, vậy phát biểu (2) đúng.
Phát biểu (1) sai vì hai đường thẳng đó có thể chéo nhau.
Chọn đáp án B
A đúng vì hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì chúng không có điểm chung, do vậy mọi đường thẳng nằm trong \(\left( P \right)\) đều không có điểm chung với \(\left( Q \right)\) nên song song với mặt phẳng \(\left( Q \right)\).
B sai vì đường thẳng nằm trong \(\left( P \right)\) và đường thẳng nằm trong \(\left( Q \right)\) có thể chéo nhau.
C sai vì \(\left( P \right)\) và \(\left( Q \right)\) có thể cắt nhau.
D sai vì qua một điểm nằm ngoài một mặt phẳng cho trước ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước đó, tập hợp các đường thẳng này là mặt phẳng duy nhất song song với mặt phẳng đã cho.
Chọn A.
a thuộc (Q) suy ra nếu a cắt (P) thì M thuộc giao tuyến của (Q) và (P) hay a thuộc b.
Tuy nhiên a // b suy ra không thể xảy ra trường hợp a cắt (P).
Kết luận: Nếu a không nằm trong (P) và song song với b thuộc (P) thì a song song với (P) hay a và (P) không có điểm chung.
a) Vì O là một điểm thuộc a là giao tuyến của hai mặt phẳng (P), (Q) và a' là đường thẳng qua O và vuông góc với (R).
Theo nhận xét trang 46 thì a' có nằm trong các mặt phẳng (P), (Q).
b) Vì a' có nằm trong các mặt phẳng (P), (Q) nên a’ là giao tuyến của hai mặt phẳng (P), (Q) do đó a trùng a' (do a cũng là giao tuyến của hai mặt phẳng (P), (Q)).
c) a vuông góc với (R) do a trùng a’ và a’ vuông góc với (R).
Trường hợp a cắt b theo dấu hiệu nhận biết hai mặt phẳng song song thì ý kiến đúng
Trường hợp a không cắt b thì a//b
Ta có: a thuộc (P), a//(Q)
B thuộc (P), b//(Q)
Do đó: (P)//(Q)
=>Ý kiến này đúng trong cả hai trường hợp
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
Lấy M thuộc a
=>\(M\in\left(P\right)\)
a//(Q)
\(\Leftrightarrow d\left(a;\left(Q\right)\right)=d\left(M;\left(Q\right)\right)\)
(P)//(Q)
=>\(d\left(\left(P\right);\left(Q\right)\right)=d\left(M;\left(Q\right)\right)\)
Do đó: \(d\left(a;\left(Q\right)\right)=d\left(\left(P\right),\left(Q\right)\right)\)