K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

tham khảo:

Tháp lớn tại Bảo tàng Louvre ở Paris có dạng hình chóp với các cạnh bên bằng nhau nên hình chiếu của đỉnh trên đáy tháp sẽ cách đều 4 đỉnh ở đáy mà đáy là hình vuông do đó hình chiếu của đỉnh là tâm của đáy tháp.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Mô hình hoá hình ảnh kim tự tháp bằng hình chóp tứ giác đều \(S.ABC{\rm{D}}\) có \(O\) là tâm của đáy. Kẻ \(SI \bot C{\rm{D}}\left( {I \in C{\rm{D}}} \right)\).

Ta có: \(SO = 21,6;C{\rm{D}} = 34\)

\(AC = \sqrt {A{B^2} + B{C^2}}  = 34\sqrt 2  \Rightarrow OC = \frac{1}{2}AC = 17\sqrt 2 \)

\(\Delta SOC\) vuông tại \(O\)\( \Rightarrow SC = \sqrt {S{O^2} + O{C^2}}  \approx 32,3\)

Vậy độ dài cạnh bên bằng \(32,3\left( m \right)\)

Tam giác \(SCD\) cân tại \(S\)

\( \Rightarrow SI\) vừa là trung tuyến, vừa là đường cao của tam giác

\( \Rightarrow I\) là trung điểm của \(CD\).

Mà \(O\) là trung điểm của \(AD\)

\( \Rightarrow OI\) là đường trung bình của tam giác \(ACD\)

\( \Rightarrow OI = \frac{1}{2}BC = 17\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OI\)

\( \Rightarrow \Delta SOI\) vuông tại \(O\)\( \Rightarrow SI = \sqrt {S{O^2} + O{I^2}}  \approx 27,5\)

\({S_{SC{\rm{D}}}} = \frac{1}{2}C{\rm{D}}.SI \approx 467,5\)

Diện tích xung quanh của kim tự tháp là: \({S_{xq}} = 4{S_{SC{\rm{D}}}} \approx 1870\left( {{m^2}} \right)\)

14 tháng 11 2023

Hoặc có mô hình sẵn loanh Quanh 25cm thì bán cho e về e cho đá phong thủy vào trong xin giúp zalo 0971116283

 

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Thể tích của kim tự tháp là: \(\frac{1}{3}{.34^2}.21,3 = 8207,6\) (\({m^3}\))

19 tháng 2 2019

Tương tự 3A

Độ dài cạnh đáy của kim tự tháp là:

Thể tích của kim tự tháp là: 10010 (m3)

12 tháng 2 2017

Tương tự câu 1, trong đó tổng diện tích các tấm kính để phủ lên hình chóp chính là diện tích xung quanh của hình chóp

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì AB // CD (ABCD là hình vuông) nên (SC, AB) = (SC, CD)

Xét tam giác SCD có

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{219}^2} + {{230}^2} - {{219}^2}}}{{2.219.230}} = \frac{{115}}{{219}} \Rightarrow \widehat {SCD} \approx 58,{32^0}\)

Vậy góc tạo bởi cạnh bên SC và cạnh đáy AB của kim tự tháp bằng khoảng 58,320.

8 tháng 12 2019

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Mô hình hoá hình ảnh kim tự tháp bằng hình chóp tứ giác đều \(S.ABC{\rm{D}}\) có \(O\) là tâm của đáy. Kẻ \(SI \bot C{\rm{D}}\left( {I \in C{\rm{D}}} \right)\).

Ta có: \(SO = 136,CD = 152\)

Tam giác \(SCD\) cân tại \(S\)

\( \Rightarrow SI\) vừa là trung tuyến, vừa là đường cao của tam giác

\( \Rightarrow I\) là trung điểm của \(CD\).

Mà \(O\) là trung điểm của \(AD\)

\( \Rightarrow OI\) là đường trung bình của tam giác \(ACD\)

\( \Rightarrow OI = \frac{1}{2}BC = 76\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OI\)

\( \Rightarrow \Delta SOI\) vuông tại \(O\)

\( \Rightarrow SI = \sqrt {S{O^2} + O{I^2}}  = 4\sqrt {1517}  \approx 155,8\)

Vậy độ dài đường cao của mặt bên xuất phát từ đỉnh của kim tự tháp khoảng 155,8 m.