S= -1/5+ 1/5^2 - 1/5^3 +...+ 1/5^2022 - 1/5^2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\) )( \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\))
=( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\) )( \(\dfrac{5}{15}\) - \(\dfrac{3}{15}\) - \(\dfrac{2}{15}\))
=( \(\dfrac{2}{123}\) + \(\dfrac{2023}{2022}\))( \(\dfrac{5-3-2}{15}\))
=( \(\dfrac{1}{123}\) + \(\dfrac{2023}{2022}\)). \(\dfrac{0}{15}\)
= ( \(\dfrac{1}{123}+\dfrac{2023}{2022}\)).0
= 0
A-B
A = 50+52+54+...52022
52xA=52+54+...52024
24xA = 52024-1
A=\(\dfrac{5^{2024}-1}{24}\)
B = 51+53+...52023
B =5x(50+52+...52022) = 5xA
M = A-B = A-5xA = -4A
M=\(\dfrac{1-5^{2024}}{6}\)
Vậy 24xA - 1 = 52024
Nên 52024 chia cho 3 dư 2
`2x-15=-25`
`2x=-10`
`x=-5`
___________
`3/5<x/10<4/5`
`3/5=(3xx10)/(5xx10)=30/50`
`x/10=(5x)/(10xx5)=(5x)/50`
`4/5=(4xx10)/(5xx10)=40/50`
`=>30/50<(5x)/50<40/50`
`=>30<5x<40`
`=>x=7`
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
tui làm được câu c thui
c) (1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
= 1 2 3 4 2 3 4 5 . . . . . 2021 2022 2022 2023 = 1.2.3.4.5....2021.2022 2.3.4.5....2022.2023 = 1 2023
\(S=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)
\(\Rightarrow\dfrac{25}{5}=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\)
\(\Rightarrow5S+S=\left(-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\right)\)
\(\Rightarrow6S=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)
\(\Rightarrow6S=-1-\dfrac{1}{5^{2023}}\)
\(\Rightarrow S=\dfrac{-1-\dfrac{1}{5^{2023}}}{6}\)