Rút gọn:
A= 2/m2-n2 . √9(m2+2mn+n2)/4 .Với m khác n;m khác -n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1
Ta có: m - 1 2 ≥ 0; n - 1 2 ≥ 0
⇒ m - 1 2 + n - 1 2 ≥ 0
⇔ m 2 – 2m + 1 + n 2 – 2n + 1 ≥ 0
⇔ m 2 + n 2 + 2 ≥ 2(m + n)
\(m^2+n^2+2\ge2\left(m+n\right)\\ \Leftrightarrow\left(m^2+2m+1\right)+\left(n^2+2n+1\right)\ge0\\ \Leftrightarrow\left(m+1\right)^2+\left(n+1\right)^2\ge0\forall m,n\)
\(m^2+n^2+2\ge2\left(m+n\right)< =>m^2+n^2+2-2m-2n\ge0\)
\(< =>m^2-2m+1+n^2-2n+1\ge0\)
\(< =>\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(luôn đúng \(\forall m,n\))
dấu'=' xảy ra<=>m=n=1
vậy \(m^2+n^2+2\ge2\left(m+n\right)\)
Bổ sung: $m,n$ là hai số không âm
$m^2+n^2+2\\=(m^2+1)+(n^2+1)$
Áp dụng BĐT Cô si với các số dương
$m^2+1\ge 2\sqrt{m^2.1}=2m\\n^2+1\ge 2\sqrt{n^2.1}=2n$
Cộng các vế của BĐT
$\Rightarrow m^2+1+n^2+1\ge 2m+2n\\\Leftrightarrow m^2+n^2+2\ge 2(m+n)$
$\Rightarrow $ Dấu "=" xảy ra khi $\begin{cases}m^2=1\\n^2=1\end{cases}$
Mà $m,n$ là hai số dương
$\Rightarrow m=n=1$
Vậy BĐT được chứng minh
a) Ta có: \(A=-34x+34y\)
\(=-34\left(x-y\right)\)
Thay x-y=2 vào biểu thức A=-34(x-y), ta được:
\(A=-34\cdot2=-68\)
Vậy: Khi x-y=2 thì A=68
b) Ta có: \(B=ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
Thay a+b=-7 và x-y=-1 vào biểu thức \(B=\left(x-y\right)\left(a+b\right)\), ta được:
\(B=-1\cdot\left(-7\right)=7\)
Vậy: Khi a+b=-7 và x-y=-1 thì B=7