CHO TAM GIÁC ABC. CM RẰNG \(\cot A+\cot B+\cot C\ge\)\(\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi \(\cot x\) là một hàm lồi trên \(\left(0,\frac{\pi}{2}\right)\), và \(A,B,C\in\left(0,\frac{\pi}{2}\right)\), ta có:
\(\cot A+\cot B+\cot C\ge3\cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)
Theo BĐT Jensen ta được ĐPCM
Đùa tí :v, Ta có:
\(tanA+tanB+tanC=tanAtanBtanC\)
Vi` vay \(cotAcotB+cotBcotC+cotCcotA=1\)
Va` \(\left(cotA-cotB\right)^2+\left(cotB-cotC\right)^2+\left(cotC-cotA\right)^2\ge0\)
Vi` vay \(cot^2A+cot^2B+cot^2C\ge1\)
Then \(\left(cotA+cotB+cotC\right)^2=cot^2A+cot^2B+cot^2C+2\left(cotAcotB+cotBcotC+cotCcotA\right)\ge3\)
Nen \(cotA+cotB+cotC\ge\sqrt{3}\)
Xay ra khi \(cotA=cotB=cotC\)
\(cotx\) là hàm lồi trên \(\left(0;\frac{\pi}{2}\right)\) và \(A,B,C\in\left(0;\frac{\pi}{2}\right)\)
Thì theo BĐT Jensen ta có:
\(cotA+cotB+cotC\ge3cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)
Xong :v
Cho hình vẽ
A G N B H D C M
Gọi G là trọng tâm của ABC
Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả;
cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)
Lại nhận thấ \(AM\ge AH\)
Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc
Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)
Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)
Áp dụng hệ quả của định lí sin và định lí cosin, ta có:
\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)
và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)
Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)
\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)