K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2023

\(B=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{101.106}\)

\(B=\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)

\(B=\dfrac{1}{5}.\left(1-\dfrac{1}{106}\right)\)

\(B=\dfrac{1}{5}.\dfrac{105}{106}\)

\(B=\dfrac{21}{106}\)

=1/5(5/1*6+5/6*11+...+5/101*106)

=1/5(1-1/6+1/6-1/11+...+1/101-1/106)

=1/5(1-1/106)

=1/5*105/106

=21/106

7 tháng 12 2021

\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{101\cdot106}\right)\\ =5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\\ =5\left(1-\dfrac{1}{106}\right)=5\cdot\dfrac{105}{106}=\dfrac{525}{106}\)

8 tháng 12 2021

cảm ơn bạn

11 tháng 2 2022

a, bạn tự làm 

b, \(B=\dfrac{5^2}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)

\(=5\left(1-\dfrac{1}{106}\right)=\dfrac{5.105}{106}=\dfrac{525}{106}\)

c, đk : \(x\ne\dfrac{2}{3}\)

Ta có : \(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)(tm)

Với x = 3 suy ra \(C=\dfrac{2.9+9-1}{3.3-2}=\dfrac{26}{7}\)

Với x = -1 suy ra \(C=\dfrac{2-3-1}{-3-2}=\dfrac{-2}{-5}=\dfrac{2}{5}\)

12 tháng 3 2016

5S=5.(1/1.6+1/6.11+...+1/496.501)

5S=5/1.6+5/6.11+...+5/496.501

5S=1/1-1/6+1/6-1/11+...+1/496-1/501

5S=1-1/501

5S=500/501

S=500/501:5=100/501

k nhé

12 tháng 3 2016

ta co:5S=5/1.6+5/6.11+5/11.16+...+5/496.501

             =1-1/6+1/6-1/11+1/11-1/16+.....+1/496-1/501

             =1-1/501=500/501

       =>S=500/501:5=100/501

MK đau tien nha bn

13 tháng 10 2015

1/1.6 + 1/6.11+ 1/11.16+ ....  

số thứ 100 có dạng 1/(496.501)  

do đó tổng trên bằng :

1/5( 1/1- 1/501)

= 100/ 501

18 tháng 5 2017

1/1-1/6+1/6-1/11+...+1/496-1/501

=1/1-1/501=500/501

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
\(5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{501-496}{496.501}\)

\(=\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+\frac{16}{11.16}-\frac{11}{11.16}+...+\frac{501}{496.501}-\frac{496}{496.501}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}=1-\frac{1}{501}=\frac{500}{501}\)

$\Rightarrow A=\frac{100}{501}$

20 tháng 3 2022

\(A=\dfrac{1}{5}\left(\dfrac{1}{1.6}+...+\dfrac{1}{496.501}\right)\)

\(A=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\cdot\cdot\cdot+\dfrac{1}{495}-\dfrac{1}{501}\right)\)

\(A=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(A=\dfrac{1}{5}\cdot\dfrac{500}{501}=\dfrac{100}{501}\)

6 tháng 10 2023

\(A=\dfrac{1}{1\cdot6}-\dfrac{1}{6\cdot11}-\dfrac{1}{11\cdot16}-\dfrac{1}{16\cdot21}-...-\dfrac{1}{46\cdot51}\)

\(=\dfrac{1}{6}-\left(\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+\dfrac{1}{16\cdot21}+...+\dfrac{1}{46\cdot51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{5}{6\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{46\cdot51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{46}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{51}\right)\)

\(=\dfrac{1}{6}-\dfrac{1}{5}\cdot\dfrac{5}{34}\)

\(=\dfrac{1}{6}-\dfrac{1}{34}\)

\(=\dfrac{7}{51}\)

Vậy \(A=\dfrac{7}{51}\)

6 tháng 10 2023

C.ơn chị ah.

8 tháng 8 2023

 CM:  \(\dfrac{1}{1.6}\)\(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+6}\)

A = \(\dfrac{1}{5}\)(\(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\)+...+ \(\dfrac{5}{\left(5n+1\right).\left(5n+6\right)}\)

A = \(\dfrac{1}{5}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\)\(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{5n+1}\) - \(\dfrac{1}{5n+6}\))

A = \(\dfrac{1}{5}\) .( \(\dfrac{1}{1}\) - \(\dfrac{1}{5n+6}\))

A = \(\dfrac{1}{5}\)\(\dfrac{5n+6-1}{5n+6}\)

A = \(\dfrac{1}{5}\)\(\dfrac{5n+5}{5n+6}\)

A = \(\dfrac{1}{5}\) . \(\dfrac{5.\left(n+1\right)}{5n+6}\)

A = \(\dfrac{n+1}{5n+6}\)

\(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\)\(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+1}\) (đpcm)

 

 

8 tháng 8 2023

\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)

\(A=\dfrac{1}{5}\left[1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right]\)

\(A=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)

\(A=\dfrac{1}{5}\left(\dfrac{5n+6-1}{5n+6}\right)=\dfrac{1}{5}\left(\dfrac{5n+5}{5n+6}\right)=\dfrac{1}{5}.5\left(\dfrac{n+1}{5n+6}\right)=\dfrac{n+1}{5n+6}\)

\(\Rightarrow dpcm\)