Cho tam giác ABC vuông ở A, đường cao AH. Gọi D, E lần lượt là chân đường vuông góc kẻ từ H đến AB, AC; O là giao điểm của AH và DE .
Gọi I, K theo thứ tự là trung điểm của HB, HC. Chứng minh tam giác IDO = tam giác IHO
Giúp mik với đang cần gấp:((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác EAFH có
\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: EAFH là hình chữ nhật
1: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE
2: \(\widehat{EDM}=90^0\)
=>\(\widehat{EDH}+\widehat{MDH}=90^0\)
=>\(\widehat{EAH}+\widehat{MDH}=90^0\)
=>\(\widehat{MDH}+\widehat{HAC}=90^0\)
=>\(\widehat{MDH}+\widehat{ABC}=90^0\)
mà \(\widehat{MHD}+\widehat{MBD}=90^0\)
nên \(\widehat{MDH}=\widehat{MHD}\)
=>MD=MH
\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)
\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)
mà \(\widehat{MDH}=\widehat{MHD}\)
nên \(\widehat{MDB}=\widehat{MBD}\)
=>MD=MB
=>MB=MH
=>M là trung điểm của BH
\(\widehat{NED}=90^0\)
=>\(\widehat{NEH}+\widehat{DEH}=90^0\)
=>\(\widehat{NEH}+\widehat{DAH}=90^0\)
mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{NEH}+\widehat{C}=90^0\)
mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)
nên \(\widehat{NEH}=\widehat{NHE}\)
=>NE=NH
\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)
\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)
mà \(\widehat{NHE}=\widehat{NEH}\)
nên \(\widehat{NEC}=\widehat{NCE}\)
=>NE=NC
mà NH=NE
nên NC=NH
=>N là trung điểm của HC
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>AH=DE và AH cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và DE
b: ΔHDB vuông tại D có DI là trung tuyến
nên DI=HI=IB
Xét ΔIDO và ΔIHO có
ID=IH
DO=HO
IO chung
=>ΔIHO=ΔIDO
c: góc IDE=góc IDH+góc EDH
=góc IHD+góc EAH
=góc HAC+góc HCA=90 độ
=>ID vuông góc DE
góc KED=góc KEH+góc DEH
=góc KHE+góc DAH
=góc HAB+góc HBA=90 độ
=>KE vuông góc ED
=>ID//KE
=>DIKE là hình thang
Xét tứ giác AEHD, có:
∠A = ∠E = ∠D = 90°
=> tứ giác AEHD là hình chữ nhật.
O là giao điểm hai đường chéo hcn AEHD
=> OD = OH (1).
DI là đường trung tuyến ứng với cạnh huyền của Δ vuông DHB
=> DI = 1/2 BH = IH (2).
Xét Δ IDO và Δ IHO, có:
OD = OH (1).
OI là cạnh chung.
DI = IH (2).
=> Δ IDO = Δ IHO (đpcm).
(bồ xem thử ổn hông nhe).