K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

cho x,y,z,t >0 thỏa: xy+4zt+2yz+2xt=9. tìm GTLN của A= căn (xy) + 2căn(zt)? | Yahoo Hỏi & Đáp

knubic.info/question/1069/tìm-nghiệm-nguyên-của-3x22y2z24xy2yz26-2xz-và-x2x6

https://diendantoanhoc.net/topic/117081-cm-sqrtxy2sqrtztleq3/?langurlbits=topic/117081-cm-sqrtxy2sqrtztleq3/&setlanguage=1&langid=2

30 tháng 6 2017

các bn ơi bé hơn hoặc bằng 3 thôi chứ ko phải 33 nhé. cảm ơn các bn đã giúp đỡ mìn

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

Áp dụng BĐT Cauchy:

\(yz+xt\geq 2\sqrt{yzxt}\Rightarrow 2yz+2xt\geq 4\sqrt{yzxt}\)

Do đó:

\(9=xy+4zt+2yz+2xt\geq xy+4zt+4\sqrt{yzxt}\)

\(\Leftrightarrow 9\geq (\sqrt{xy}+2\sqrt{zt})^2\)

\(\Rightarrow 3\ge \sqrt{xy}+2\sqrt{zt}\) (đpcm)

Dấu "=" xảy ra khi \(yz=xt\)

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

12 tháng 3 2017

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

13 tháng 3 2017

cái cách 2 là svac mà nhỉ

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

15 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}\)

Tương tự rồi cộng lại ta có:

\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)\)

\(\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}\)

\(=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Đẳng thức xảy ra khi \(x=y=z=1\)

4 tháng 10 2019

Áp dụng BĐT AM-GM ta có:

\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}3yz​≤3y+z+1​⇒3yzx​≥3y+z+1​x​=y+z+13x

Tương tự rồi cộng lại ta có:

VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)VT≥3(y+z+1x​+x+z+1y​+x+y+1z​)

=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=3(xy+yz+xx2​+xy+yz+yy2​+yz+xz+zz2​)

\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}≥2(xy+yz+xz)+x+y+z3(x4+y4+z4)​≥x2+y2+z2(x2+y2+z2)2​

=x^2+y^2+z^2\ge xy+yz+xz=VP=x2+y2+z2≥xy+yz+xz=VP

Đẳng thức xảy ra khi x=y=z=1x=y=z=1

1 tháng 8 2016

ta sử dụng bđt :\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)(dk mọi abcd)
cái này cm dễ thôi. bunhia nha
ĐĂT :\(A=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)
\(\Rightarrow A=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{y\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{z\sqrt{3}}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}\right)^2}\)
Áp dingj bđt trên ta được \(A\ge\sqrt{\left(x+\frac{y}{2}+y+\frac{z}{2}+z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}+\frac{y\sqrt{3}}{2}+\frac{z\sqrt{3}}{2}\right)^2}\)
\(\Rightarrow A\ge\sqrt{\frac{9}{4}\left(x+y+z\right)^2+\frac{3}{4}\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)\)(dpcm)
Dấu = xảy ra khi và chỉ khi x=y=z

2 tháng 8 2016

\(\sqrt{x^2+xy+y^2}=\sqrt{\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2}\ge\sqrt{\frac{3}{4}\left(x+y\right)^2}=\frac{\sqrt{3}}{2}\left(x+y\right)\)