K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

\(n+5n+16\)

\(=6n+16\)

Áp dụng công thức : \(\hept{\begin{cases}a⋮n\\b⋮n\end{cases}}\Rightarrow\left(a+b\right)⋮n\)

Mà 169 không chia hết cho 6 nên n +5n + 16 không chia hết cho 169

25 tháng 9 2020

Ta có: c|a => Tồn tại số n để: a = nc 

b|a => Tồn tại số n để a = mb 

=> nc = mb => nc \(⋮\)b mà (c;b) = 1 => n \(⋮\)

=> n = b.k

=> a = nc = bck 

=> a \(⋮\)bc hay bc|a

18 tháng 2 2018

giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49

11 tháng 8 2020

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

11 tháng 8 2020

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM

2 tháng 7 2017

giả sử n^2+5n+16⋮169 

⇒4n^2 + 20n + 64 ⋮ 169 

⇒(2n+5)^2 + 39 ⋮ 169 

⇒(2n+5)2^+39⋮13 (1)

 mà 39⋮13

 ⇒(2n+5)^ 2⋮ 169 (2) từ (1) và (2) ta có: 39⋮169 ( vô lí) 

⇒ đpcm 

2 tháng 7 2017

n= 3

n2= 99

19 tháng 10 2020

c, Giả sử \(C⋮169\Rightarrow4C=\left(2n+5\right)^2+39⋮169\Rightarrow4C⋮13\)

\(\Rightarrow\left(2n+5\right)^2⋮13\Rightarrow\left(2n+5\right)^2⋮169\)

\(\Rightarrow\left(2n+5\right)^2+39\) không chia hết cho 169

\(\Leftrightarrow4C\) không chia hết cho 169 (Vô lí)

\(\Rightarrowđpcm\)

19 tháng 10 2020

a, Giả sử \(A⋮121\Rightarrow4A=4n^2+12n+9+11=\left(2n+3\right)^2+11⋮11\)

\(\Rightarrow\left(2n+3\right)^2⋮11\Rightarrow\left(2n+3\right)^2⋮121\)

\(\Rightarrow\left(2n+3\right)^2+11\) không chia hết cho 121

\(\Leftrightarrow4A\) không chia hết cho 121 (Vô lí)

\(\Rightarrowđpcm\)

b, Giả sử \(B⋮49\Rightarrow4B=\left(2n+3\right)^2+7⋮49\)

\(\Rightarrow\left(2n+3\right)^2⋮7\Rightarrow\left(2n+3\right)^2⋮49\)

\(\Rightarrow\left(2n+3\right)^2+7\) không chia hết cho 49

\(\Leftrightarrow4B\) không chia hết cho 49 (Vô lí)

\(\Rightarrowđpcm\)