TÌm đa thức P(x) biết P(x) chia cho x - 1 dư -3 , P(x) cho x + 1 dư 3 , P(x) chia x^2 - 1 được thương là : 2x và còn dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Vì P(x) chia x - 1 còn dư -3
=> P(x) = (x - 1).Q(x) - 3 ∀x (1)
Vì P(x) chia x + 1 dư 3
=> P(x) = (x + 1).G(x) + 3 ∀x (2)
Vì P(x) chia x2 - 1 được thương là 2x và còn dư
=> P(x) = (x2 - 1)2x + ax + b ∀x(3)
Ta có P(1) = -3 và P(1) = a + b nên a + b = -3 (4)
P(-1) = 3 và P(-1) = -a + b nên -a + b = 3 (5)
Từ 4 và 5 => a + b - a + b = -3 + 3
=> 2b = 0
=> b = 0
=> a = -3
Vậy đa thức P(x) = (x2 - 1)2x - 3 = 2x3 - 5x
Theo định lý Bezout: số dư khi chia P(x) cho x + 2 là P(-2) => P(-2) = 3,589
Số dư khi chia P(x) cho x - 3 là P(3) => P(3) = 4,237
Gọi số dư khi chia P(x) cho (x + 2)(x - 3) là ax + b (a ≠ 0)
Ta có: P(x) = (2x + 1)(x + 2)(x - 3) + ax + b
= 2x3 - x2 - (13 - a)x - 6 + b
=> P(-2) = -2a + b = 3,589 (1); P(3) = 3a + b = 4,237 (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}-2a+b=3,589\\3a+b=4,237\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=0,648\\-2a+b=3,589\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0,1296\\b=3,8482\end{matrix}\right.\) (t/m)
=> P(x) = 2x3 - x2 - 12,8704x - 2,1518
=> P(2) = 16 - 4 - 25,7408 - 2,1518 = -15,8926
P(20) = 16000 - 400 - 257,408 - 2,1518 = 15340,4402
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Vì P(x) chia x - 1 còn dư -3
=> P(x) = (x - 1).Q(x) - 3 \(\forall x\) (1)
Vì P(x) chia x + 1 dư 3
=> P(x) = (x + 1).G(x) + 3 \(\forall x\) (2)
Vì P(x) chia x2 - 1 được thương là 2x và còn dư
=> P(x) = (x2 - 1)2x + ax + b \(\forall x\)(3)
Ta có P(1) = -3 và P(1) = a + b nên a + b = -3 (4)
P(-1) = 3 và P(-1) = -a + b nên -a + b = 3 (5)
Từ 4 và 5 => a + b - a + b = -3 + 3
=> 2b = 0
=> b = 0
=> a = -3
Vậy đa thức P(x) = (x2 - 1)2x - 3 = 2x3 - 5x