K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2023

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm)

$AM=\frac{BC}{2}=30:2=15$ (cm) (tính chất đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền) 

$GM=\frac{1}{3}AM=\frac{1}{3}.15=5$ (cm) 

$GA=\frac{2}{3}AM=\frac{2}{3}.15=10$ (cm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2023

Hình vẽ:

26 tháng 3

Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm                               a, Tính HM,PA,GB.                                 b, Chứng minh tam giác HPG cân

       

19 tháng 7 2017

a, áp dụng định lý pytago  đối  với tam giá vuông abc tao có                                      mk chỉ làm dc phân a thôi phần b vẫn chưa 

 BC2 = AB2 + AC2                                                                                                               nghĩ ra bạn ak

BC2= 62 + 82

BC2=36+64

BC2=100

BC=căn bậc 2 của 100 và bằng 10

19 tháng 7 2017

thank ban nha

4 tháng 4 2016

mk pit làm phần a thui

vì AG=2GM 

+) AG=4 cm

=>4=2GM

=> MG=4:2=2 (cm)

+)gm+ag=am

+)mg=2 cm

+) ag=9cm

=>2+9=am

=> am=11 cm

tính độ dài đoạn cp và bn tương tự như trên

4 tháng 4 2016

cảm ơn rất nhiều ạ

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao và AM cũng là phân giác

Xét ΔABG và ΔACG có 

AB=AC

\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

b: Xét ΔBIC có 

M là trung điểm của BC

MG//IC

Do đó: G là trung điểm của BI

Xét ΔBIC có

M là trung điểm của BC

G là trung điểm của BI

Do đó: MG là đường trung bình

=>MG=1/2CI

17 tháng 9 2023

Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\)độ dài đường trung tuyến đi qua đỉnh ấy nên:

     \(\begin{array}{l}\dfrac{{GA}}{{AM}} = \dfrac{{GB}}{{BN}} = \dfrac{{GC}}{{CP}} = \dfrac{2}{3}\\ \to GA = \dfrac{2}{3}AM;GB = \dfrac{2}{3}BN;GC = \dfrac{2}{3}CP\end{array}\)

Vậy:

     \(GA + GB + GC = \dfrac{2}{3}AM + \dfrac{2}{3}BN + \dfrac{2}{3}CP = \dfrac{2}{3}(AM + BN + CP)\).