Hai vòi nước cùng chảy vào 1 cái bể thì đầy trong 3h 30ph. Nếu người ta cho vòi thứ nhất chảy 3h và vòi thứ hai chảy 2h thì được 4/5 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 3h20' = 10/3 h
Gọi thời gian vòi 1 chảy 1 mình đầy bể là : x ( h) ( điều kiện: x > 10/3)
Trong 1h, vòi 1 chảy riêng được: 1:x = 1/x ( bể)
Trong 3h, vòi 1 chảy riêng được: 3. 1/x = 3/x ( bể)
Trong 2h, vòi 2 chảy riêng được : 4/5 - 3/x = (4x-15)/(5x) ( bể)
Trong 1h , vòi 1 chảy riêng được : (4x-15)/(5x) : 2 = (4x-15)/(10x) ( bể)
Trong 1h, 2 vòi chảy được : 1 : 10/3 = 3/10 ( bể)
Theo bài ra ta có phương trình: (4x-15)/(10x) + 1/x = 3/10
<=> ... <=> x= 5 (tmđk)
Trong 1h, vòi 1 chảy riêng được : 1/5 ( bể)
vòi 2 chảy riêng để đầy bể là: 1:(3/10 - 1/5) = 10 ( bể)
Vậy ...
( Bài này có cách khác ngắn hơn nhưng lại là kiến thức lớp 9, bạn tham khảo cách này nhé!)
Lời giải:
Giả sử vòi 1 và vòi 2 chảy 1 mình thì trong $a$ và $b$ giờ sẽ đầy bể (lần lượt)
Khi đó, trong 1 giờ thì vòi 1 chảy được $\frac{1}{a}$ bể, vòi 2 chảy $\frac{1}{b}$ bể.
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{16}{a}+\frac{16}{b}=1\\ \frac{3}{a}+\frac{6}{b}=\frac{1}{4}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{24}\\ \frac{1}{b}=\frac{1}{48}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=24\\ b=48\end{matrix}\right.\)
Vậy vòi 1 chảy 1 mình trong 24 giờ sẽ đầy bể.
Gọi thời vòi 1 vòi 2 chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{10}\\\dfrac{1}{b}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=10\\b=15\end{matrix}\right.\left(tm\right)\)
Đổi 3 giờ 30 phút = 3,5 giờ
Cứ 1 giờ hai vòi chảy được: 1: 3,5 = \(\dfrac{2}{7}\)(bể)
2 giờ hai vòi cùng chảy được: \(\dfrac{2}{7}\) \(\times\) 2 = \(\dfrac{4}{7}\) (bể)
Trong 1 giờ vòi 1 chảy được: \(\dfrac{4}{5}\) - \(\dfrac{4}{7}\) = \(\dfrac{8}{35}\) (bể)
Vòi 1 chảy đầy bể sau: 1 : \(\dfrac{8}{35}\) = \(\dfrac{35}{8}\) (giờ)
Vòi 2 chảy một mình trong 1 giờ được: \(\dfrac{2}{7}\) - \(\dfrac{8}{35}\) = \(\dfrac{2}{35}\)(bể)
Vòi 2 chảy đầy bể sau: 1 : \(\dfrac{2}{35}\) = \(\dfrac{35}{2}\) (giờ)
Kết luận:.....
Gọi x (h), y(h) lần lượt là thời gian chảy một mình đầy bể của vòi thứ nhất và vòi thứ hai (x, y > 0)
3h 30 phút = 3,5 h
Cả hai vòi cùng chảy trong 1 giờ:
1/x + 1/y = 1/3,5 (1)
Vòi thứ nhất chảy 3h, vòi thứ hai chảy 2h được 4/5 bể nên:
3/x + 2/y = 4/5 (2)
Đặt u = 1/x; v = 1/y
(1) ⇔ u + v = 2/7
⇔ u = 2/7 - v
(2) ⇔ 3u + 2v = 4/5 (3)
Thế u = 2/7 - v vào (3) ta có:
(3) ⇔ 3.(2/7 - v) + 2v = 4/5
⇔ 6/7 - 3v + 2v = 4/5
⇔ -v = 4/5 - 6/7
⇔ -v = -2/35
⇔ v = 2/35
Thế v = 2/35 vào u = 2/7 - v, ta được:
u = 2/7 - 2/35
⇔ u = 8/35
*) Với u = 8/35
⇔ 1/x = 8/35
⇔ x = 35/8 (nhận)
*) Với v = 2/35
⇔ 1/y = 2/35
⇔ y = 35/2 (nhận)
Vậy vòi thứ nhất chảy một mình trong 35/8 h thì đầy bể
Vòi thứ hai chảy một mình trong 35/2 h thì đầy bể