tìm x biết
5x^2+7x+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x+5x^2=43x^3\\ \Rightarrow43x^3-5x^2-5x=0\\ \Rightarrow x\left(43x^2-5x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\43x^2-5x-5=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=25+4.5.43=885\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5+\sqrt{885}}{86}\\x=\dfrac{5-\sqrt{885}}{86}\end{matrix}\right.\)
a) x2 - 4x - 5 = 0
=> x2 - 5x + x - 5 = 0
=> x(x - 5) + (x - 5) = 0
=> (x + 1)(x - 5) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
b) 4x2 + 7x - 11 = 0
=> 4x2 + 11x - 4x - 11 = 0
=> x(4x + 11) - (4x + 11) = 0
=> (x - 1)(4x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)
c) -7x2 + 6x + 1 = 0
=> -7x2 + 7x - x + 1 = 0
=> -7x(x - 1) - (x - 1) = 0
=> (-7x - 1)(x - 1) = 0
=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)
d) -10x2 + 7x + 3 = 0
=> -10x2 + 10x - 3x + 3 = 0
=> -10x(x - 1) - 3(x - 1) = 0
=> (-10x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
I don't now
sorry
...................
nha
a) \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2=0\)
\(\Leftrightarrow\)\(\left[\left(3x-1\right)+\left(2x-1\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(5x-2\right)^2=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\)
Vậy...
b) \(\left(7x+2\right)^2+\left(7x-2\right)^2-2\left(7x+2\right)\left(7x-2\right)=0\)
\(\Leftrightarrow\)\(\left[\left(7x+2\right)-\left(7x-2\right)\right]^2=0\)
\(\Leftrightarrow\)\(4^2=0\) vô lí
Vậy pt vô nghiệm
\(x\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)
a) \(x\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
b) \(3x^2-27=0\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
c) \(\left(x-5\right)^2=x-5\)
\(\Leftrightarrow x^2-10x+25-x+5=0\)
\(\Leftrightarrow x^2-11x+30=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)
d) \(2\left(x+7\right)-x^2-7x=0\)
\(\Leftrightarrow2x+14-x^2-7x=0\)
\(\Leftrightarrow-x^2-5x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
e)\(7x\left(x-3\right)+2.3x=0\)
\(\Leftrightarrow7x^2-21x+6x=0\)
\(\Leftrightarrow7x^2-15x=0\)
\(\Leftrightarrow x\left(7x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)
#H
e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)
\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)
=> 2 TH
*3x+7=0 *10x-4=0
=>3x=-7 =>10x=4
=>x=-7/3 =>x=4/10=2/5
vậy x=-7/3 hoặc x=2/5
g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)
=> 2 TH
*-(x+3)=0 *3x-5=0
=>-x=-3 =>3x=5
=x=3 =>x=5/3
h)\(x^2-x^2+x-1=0\)
\(\Rightarrow0+x-1=0\)
\(\Rightarrow x-1=0\)
=>x=0+1
=>x=1
vậy x=1
k, x(x+ 16) - 7x - 42 = 0
=>x^2+16x-7x-42=0
=>x^2+9x-42=0
vì x^2>0
do đó x^2+9x-42>0
nên o có gt nào của x t/m y/cầu đề bài
m)x^2+7x+12=0
=>x^2+3x++4x+12=0
=>x(x+3)+4(x+3)=0
=>(x+4).(x+3)=0
=>2 TH
=> *x+4=0
=>x=-4
vậy x=-4
*x+3=0
=>x=-3
vậy x=-3
n)x^2-7x+12=0
=>x^2-4x-3x+12=0
=>x(x-4)-3(x-4)=0
=>(x-3).(x-4)=0
=>2 TH
*x-3=0=>x=0+3=>x=3
*x-4=0=>x=0+4=>x=4
vậy x=3 hoặc x=4
a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1
b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1
5x^2 + 7x + 2 = 0
Phương trình tích:
5x^2 + 5x + 2x + 2 = 0
5x(x +1) + 2(x+1) = 0
(5x + 2)(x+1) = 0
5x + 2 = 0 hoặc x + 1 = 0
x= -2/5 hoặc x = -1
\(5x^2+7x+2=0\Leftrightarrow5x^2+5x+2x+2=0\Leftrightarrow5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{2}{5}\end{cases}}\)
Vậy........