Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(Q=x^4+2x^2+2\left(x^2+1\right)\left(x^2+6x-1\right)+\left(x^2+6x-1\right)^2\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^4+2x^2+1\right)\right]-1\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2-6x+1\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right]-1\)
\(Q=\left(x^2+6x-1+x^2+1\right)^2-1\)
\(Q=\left(2x^2+6x\right)^2-1\)
\(Q=99^2-1\)
\(Q=9800\)
Bài 2:
Đặt \(A=\left(2+1\right)\left(2^2+1\right)...\left(x^{64}+1\right)+1\)
\(\left(2-1\right)\cdot A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(1\cdot A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(A=2^{128}-1^2+1\)
\(A=2^{128}\left(đpcm\right)\)
Bài 3:
Để C là số nguyên thì x2 - 3 ⋮ x - 2
<=> x (x - 2) + 2x - 3 ⋮ x - 2
mà x (x - 2) ⋮ x - 2
=> 2x - 3 ⋮ x - 2
<=> 2 (x - 2) + 3 ⋮ x - 2
mà 2 (x - 2) ⋮ x - 2
=> 3 ⋮ x - 2
=> x - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy x thuộc { -1; 1; 3; 5 }
Bạn chú ý đăng lẻ câu hỏi! 1/
a/ \(=x^3-2x^5\)
b/\(=5x^2+5-x^3-x\)
c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)
d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)
e/ \(=x^4-x^2+2x^3-2x\)
f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)
26:
A=12x^2+10x-6x-5-(12x^2-8x+3x-2)
=12x^2+4x-5-12x^2+5x+2
=9x-3
Khi x=-2 thì A=-18-3=-21
25:
b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)
=y^3+y^2+y-3y^2-3y-3-y^3+2y
=-2y^2-3
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^