Dốc là đoạn đường thẳng nối hai khu vực hay hai vùng có độ cao khác nhau. Độ dốc được xác định bằng góc giữa dốc và mặt phẳng nằm ngang, ở đó độ dốc lớn nhất là 100%, tương ứng với góc \({90^ \circ }\) (độ dốc 10% tương ứng với góc \({9^ \circ }\)). Giả sử có hai điểm \(A,B\) nằm ở độ cao lần lượt là 200 m, 220 m so với mực nước biển và đoạn dốc \(AB\) dài 120 m. Độ dốc đó bằng bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Chiều dài dốc là l=h√2 (vì nghiêng 45 độ nên l là cạnh huyền của △ vuông cân)
Công của trọng lực bằng công của lực ma sát là:
P.h = Fms1.l+Fms2.h= Fms2/2√ . h.2 + Fms2.h = 2Fms2.h ⇒ Fms2/P = 1/2
(Fms1 là lực ma sát trên dốc, Fms2 là lực ma sát trên mặt ngang)
Vậy ...
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm AB, tia Ox trùng với tia OB, tia Oy hướng lên trên.
Khi đó \(A\left(-200;0\right),B\left(200;0\right)\). Gọi chiều cao giới hạn của cầu là h (h > 0), suy ra đỉnh cầu có tọa độ (0;h)
Ta tìm được phương trình parabol của cầu là: \(y=-\dfrac{h}{200^2}\cdot x^2+h\)
Ta có: \(y'=-\dfrac{2h}{200^2}\cdot x\), suy ra hệ số góc xác định độ dốc của mặt cầu là
\(k=y'=-\dfrac{2h}{200^2}\cdot x;-200\le x\le200\)
Vì độ dốc của mặt cầu không quá 10o nên ta có: \(\dfrac{h}{100}\le tan10^o\Leftrightarrow h\le17,6\)
Vậy chiều cao giới hạn từ đỉnh cầu tới mặt đường là 17,6cm
Giả sử góc tạo bởi đường thẳng dành cho người khuyết tật và mặt phẳng nằm ngang là α
Vì độ dốc của đường thẳng dành cho người khuyết tật được quy định là không quá \(\frac{1}{{12}}\)nên ta có
\(\tan \alpha \le \frac{1}{{12}} \Rightarrow \alpha \le 4,{76^0}\)
Vậy góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang không vượt quá 4,760
Gọi B là một điểm nằm trên thanh ngang và H là hình chiếu vuông góc xuống mặt dốc.
Vì dốc nghiêng 150 so với phương nằm ngang nên nên góc giữa cột và mặt phẳng dốc bằng 750
Khoảng cách từ B đến mặt phẳng dốc là:
\(BH=2.28\cdot sin75\simeq2,2\left(m\right)\)
=>Không cho phép xe cao 2,21m đi qua cầu
Mô hình hoá như hình vẽ, với \(AB\) là chiều dài con dốc, \(AH\) là độ cao của điểm \(A\) so với mặt nước biển, \(BK\) là độ cao của điểm \(B\) so với mặt nước biển, \(BI\) là chiều cao của con dốc, độ lớn của góc \(\widehat {BAI}\) chỉ độ dốc.
Ta có: \(AH = 200,BK = 220,AB = 120\).
\(AHKB\) là hình chữ nhật \( \Rightarrow IK = AH = 200 \Rightarrow BI = BK - IK = 220 - 200 = 20\)
Vì tam giác \(ABI\) vuông tại \(I\) nên ta có:
\(\sin \widehat {ABI} = \frac{{BI}}{{AB}} = \frac{{20}}{{120}} = \frac{1}{6} \Rightarrow \widehat {ABI} \approx 9,{59^ \circ }\) tương ứng với 10,66%
Vậy độ dốc của con dốc đó là 10,66%.