K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

nếu a=14 thì b=35

nếu b=14 thì a=35

29 tháng 6 2017

Nếu a =14 thì b = 35

Nếu b =14 thì a = 35

DD
26 tháng 1 2022

Vì \(\left(a,b\right)=12\)nên ta đặt \(a=12m,b=12n,m>0,n>0,\left(m,n\right)=1\).

\(\frac{a}{b}=\frac{12m}{12n}=\frac{m}{n}=\frac{49}{56}=\frac{7}{8}\)

suy ra \(m=7,n=8\)

\(\Rightarrow a=84,b=96\).

29 tháng 5 2015

\(\frac{a}{b}=\frac{49}{56}=\frac{7}{8}\)

ƯCLN(a ; b) = 12 chứng tỏ ta đã chia cả tử và mẫu của phân số \(\frac{a}{b}\) cho 12 để \(\frac{a}{b}\) rút gọn thành \(\frac{7}{8}\)

Vậy a = 7 . 12 = 84  ;  b = 8 . 12 = 96

 

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

a.

Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:

$5a=13b$

$\Rightarrow 5.48x=13.48y$

$\Rightarrow 5x=13y$

$\Rightarrow 5x\vdots 13; 13y\vdots 5$

$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.

Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$

$\Rightarrow x=13; y=5$

$\Rightarrow x=13.48=624; y=5.48=240$

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

b. 

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.

Khi đó:
$BCNN(a,b)=dxy=360$

$ab=dx.dy=d.dxy=6480$

$\Rightarrow d.360=6480$

$\Rightarrow d=18$

$\RIghtarrow xy=360:d=360:18=20$

Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:

$(x,y)=(1,20), (4,5), (5,4), (20,1)$

Đến đây bạn thay vào tìm $a,b$ thôi.

20 tháng 8 2019

Bài 1:

Ta có ab=ƯCLN (a,b). BCNN (a,b)

=>ƯCLN (a,b)=ab:BCNN (a,b)

=>ƯCLN (a,b)=2940:210=14

Ta có: a=14. a' và b=14.b'

Ta có: a.b=2940

Thay số vào, ta có: a.b=14.a'.14.b'=(14.14).a'.b'=2940

=>a'.b'=2940:(14.14)=15 và ƯCLN (a',b')=1

Ta có:

a'13515
b'15531

=>

a144270210
b210704214

Vậy các cặp số a,b cần tìm là:14 và 210;42 và 70;70 và 42;210 và 14.

2 bài còn lại làm tương tự !

19 tháng 11 2016

a) Gọi a = 5 . k  ;  b = 5 . h    thì  (k ; h) = 1. k ; h \(\in\)N*

Ta có a . b = 5 . k . 5 . h = 300

               5 . 5 . k . h = 300

               25 . k . h = 300

               k . h = 300 : 25

               k .h = 12

Ta có bảng sau :

k          |        1       |        12     |        3      |       4      |

h         |         12     |        1       |       4       |      3      |

a = 5k  |        5      |        60      |      15      |       20    |

b = 5h  |      60     |          5       |      20      |     15      |

Vậy ta có các bộ số (a,b) như sau : (5,60) ; (60,5) ; (15,20) ; (20,15)

b) tương tự như phần a bạn tự làm

19 tháng 11 2016

Bài này giải ra thì khó hiểu lắm

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)