K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)

\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\cdot\frac{29}{6}\)

\(A=\frac{29}{18}\)

29 tháng 6 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)

\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)

29 tháng 6 2017

a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)

\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)

1 tháng 7 2017

Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)

\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)

\(2A=\frac{12}{3}-\frac{12}{99}\)

\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)

6 tháng 4 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

6 tháng 4 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

7 tháng 5 2017

\(B=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+........+\frac{1}{27.30}\right)\)  

\(B=3.\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......-\frac{1}{27}+\frac{1}{27}-\frac{1}{30}\right)\) 

\(B=1.\left(\frac{1}{1}-\frac{1}{30}\right)\) 

\(B=\frac{29}{30}\)

7 tháng 5 2017

B =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

B = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{27}-\frac{1}{30}\)

B =\(\frac{1}{1}-\frac{1}{30}\)

B =\(\frac{29}{30}\)

24 tháng 3 2019

a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))

= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))

=9(1-\(\frac{1}{100}\))

A=\(\frac{891}{100}\)

b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))

=1-\(\frac{1}{30}\)

B=\(\frac{29}{30}\)

24 tháng 3 2019

a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)

\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

28 tháng 3 2017

a,1/1-1/4+1/4-1/7+...+1/2008-1/2011

=(1-1/2011)+(-1/4+1/4)+...+(-1/2008+1/2008)

=1-1/2011+0+...+0

=1-1/2011

=2010/2011

13 tháng 5 2017

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

13 tháng 5 2017

33/50

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)