K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

để P thuộc Z =>2n+1 chia hết cho n+5

=>2n+10-9 chia hết cho n+5

=>2(n+5)-9 chia hết cho n+5

=>9 chia hết cho n+5

\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

28 tháng 7 2018

 \(A=2018-\left|x-7\right|-\left|y+2\right|\)

Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)

\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)

Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)

Tham khảo~

14 tháng 12 2016

Bài 1:

\(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" khi \(x=\frac{1}{2}\)

Vậy \(Min=\frac{3}{4}\) khi \(x=\frac{1}{2}\)

Bài 2:

\(x^2+10x+2041=x^2+10x+25+2016\)

\(=\left(x^2+10x+25\right)+2016\)

\(=\left(x+5\right)^2+2016\ge2016\)

Dấu "=" khi \(x=-5\)

Vậy \(Min=2016\) khi \(x=-5\)

14 tháng 12 2016

nhìn là bit tu lam

28 tháng 7 2019

\(P=a^2+a+1\)

\(=a^2+\frac{1}{2}\cdot2\cdot a+\frac{1}{4}+\frac{3}{4}\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(a+\frac{1}{2}\right)^2\ge0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)

dấu "=" xảy ra khi : 

\(\left(a+\frac{1}{2}\right)^2=0\Rightarrow a+\frac{1}{2}=0\Rightarrow a=-\frac{1}{2}\)

vậy 

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)