K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}-........-\frac{1}{97.98.99}\)

\(2A=\frac{2}{1.2.3}-\frac{2}{2.3.4}-........-\frac{2}{97.98.99}\)

\(2A=-\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{97.98.99}\right)\)

\(2A=-\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+......+\frac{1}{97.98}-\frac{1}{98.99}\right)\)

\(2A=-\left(\frac{1}{1.2}-\frac{1}{98.99}\right)\)

\(2A=-\frac{2425}{4851}\)

\(A=-\frac{2425}{4851}:2\)

\(A=-\frac{2425}{9702}\)

29 tháng 6 2017

\(\frac{98}{99}\)

1 tháng 9 2017

98 / 99

10 tháng 11 2017

Đặt B, ta có:

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

Thấy:

\(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0\)

\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

21 tháng 3 2015

T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100

2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100

2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)

2A=1/2+1/99*100

A=tự tính nha

19 tháng 2 2018

A= [(1/2-1/2*3)/2]+[(1/2-1/3*4)/2]+...+[(1/2-1/99*100)/2]

A=(1/2-1/99*100)/2

A=-101/198/2

A=-101/396

19 tháng 3 2019

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)

19 tháng 3 2019

Giải: Đặt A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau. 
Ta xét: 
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100 
Tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó: 
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100 
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100) 
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100 
= 1/1.2 - 1/99.100 
= 1/2 - 1/9900 
= 4950/9900 - 1/9900 
= 4949/9900. 
Vậy A = 4949/9900

9 tháng 4 2016

mình làm câu đầu tiên thôi nhé nhớ k nha

Gọi biểu thức đó là A ta có:

\(A=\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{97.98.99}\)

\(2.A=\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{97.98.99}\)

\(2.A=\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{97.98}-\frac{1}{98.99}\)

\(2.A=\frac{1}{6}-\frac{1}{9702}\)

\(2.A=\frac{808}{4851}\)

\(A=\frac{808}{4851}:2\)

\(A=\frac{404}{4851}\)

14 tháng 3 2017

=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)

=1+\(\frac{1}{101}\)

=\(\frac{102}{101}\)

14 tháng 3 2017

1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]

1/2.3.4 = 1/2[ 1/2- 1/3 ] 

...................

1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]

=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]

A = 1/2 . [1/1.2 -1/100 .101]

A= 1/2 . 5049 /10100 = 5049 / 20200.

Mình nghĩ là vậy đó.

12 tháng 4 2016

Đặt S = 1/1.2.3 - 1/2.3.4 - 1/3.4.5  - ...- 1/97.98.99

S x 2 = 2/1.2.3 - 2/2.3.4 - 2/3.4.5 - ...- 2/97.98.99

         = (1/1.2 -1/2.3) - (1/2.3 - 1/3.4 ) - (1/3.4 - 1/4.5) - ...- (1/97.98 - 1/98.99)

        = 1/1.2 - 1/2.3 - 1/2.3 + 1/3.4 - 1/3.4 + 1/4.5 - ....- 1/97.98 + 1/98.99

        = 1/2 -1/3 + 1/98.99

       =  1618/9072 => S = 1618/9072 : 2 = 809/9072