1,chứng minh: abc+cba+81b chia hết cho 101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc + cba + 81b
= 100a+10b+c+100c+10b+a+81b
=101a+101c+20b+81b
=101a+101c+101b
=(a+b+c) : 101 (đpcm)
a; Chứng minh tích hai số tự nhiên liên tiếp luôn chia hết cho 6
Ta có 1; 2 là hai số tự nhiên liên tiếp
Tích của hai số trên là: 1.2 = 2 không chia hết cho 6
Vậy tích của hai số tự nhiên liên tiếp luôn chia hết cho 6 là điều không thể.
A = \(\overline{aaaa}\) ⋮ 101
A = a x 1111
A = a x 101 x 11 ⋮ 101 (đpcm)
(abc) chia hết cho 37
=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
abc+cba +bca = 111(a+b+c) =37.3(a+b+c) chia hết cho 37
Nếu abc chia hết cho 37 => (cba+bca) chia hết cho 37 => cba chia hết cho 37 và bca chia hết cho 37
Gọi 4 số liên tiếp là k
Ta có : k + (k + 1) + (k + 2) + (k + 3)
= k + k + 1 + k + 2 + k + 3
= 4k + 1 + 2 + 3
= 4k + 6
= 4k + 4 + 2
= 4 . (k + 1) + 2
Vì 4(k + 1) chia hết cho 4
2 không chia hết cho 4
=> 4 ( k+1) + 2 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4.
Gọi 4 số liên tiếp là k
Ta có : k + (k + 1) + (k + 2) + (k + 3)
= k + k + 1 + k + 2 + k + 3
= 4k + 1 + 2 + 3
= 4k + 6
= 4k + 4 + 2
= 4 . (k + 1) + 2
Vì 4(k + 1) chia hết cho 4
2 không chia hết cho 4
=> 4 ( k+1) + 2 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4
Chỉ cần bạn nhớ dạng thức như sau: abc = 100a+10b+c thì sử dụng được hầu hết dạng toán như thế này.
Ta có: abc - cba = 100a+10b+c-100c-10b-a = (100a-a)+(10b-10b)-(100c-c) = 99a - 99c = 99(a-c) chia hết cho 99
Ta có:
abc - cba = 100a+10b+c-100c-10b-a = (100a-a) + (10b-10b) - (100c-c) = 99a - 99c = 99. (a-c) chia hết cho 99 (đpcm)
CÁC BẠN TRẢ LỜI NHANH GIÚP MÌNH NHA SẮP PHẢI NỘP RỒI
nhanh len cac ban oi mai minh nop roi